
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1963

Body composition of women
Mary Elizabeth Sturkie Prather
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Home Economics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Prather, Mary Elizabeth Sturkie, "Body composition of women " (1963). Retrospective Theses and Dissertations. 2358.
https://lib.dr.iastate.edu/rtd/2358

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F2358&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F2358&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F2358&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F2358&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F2358&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F2358&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1055?utm_source=lib.dr.iastate.edu%2Frtd%2F2358&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/2358?utm_source=lib.dr.iastate.edu%2Frtd%2F2358&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

This dissertation has been 63—5192 
microfilmed exactly as received 

PRATHER, Mary Elizabeth Sturkie, 1929-
BODY COMPOSITION OF WOMEN. 

Iowa State University of Science and Technology 
Ph.D., 1963 
Home Economics 

University Microfilms, Inc., Ann Arbor, Michigan 



www.manaraa.com

BODY COMPOSITION OF WOMEN 

by 

Mary Elizabeth Sturkie Prather 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of 

The Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Major Subject: Nutrition 

Approved: 

In Charge of Major Work 

Head of Major Department 

ate College 

Iowa State University 
Of Science and Technology 

Ames, Iowa 

1963 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

ii 

TABLE OF CONTENTS 

Page 

INTRODUCTION 1 

REVIEW OF THE LITERATURE 4 

Direct Analysis of Human Cadavers 4 

Body Water 6 

Body Fat 27 

METHOD OF PROCEDURE 53 

Experimental Plan 53 

Subjects 55 

Anthropometric Techniques 55 

Density Measurement 59 

Body Water Measurement 61 

Statistical Analysis 65a 

RESULTS AND DISCUSSION 66b 

Height - Weight 66b 

Body Density 71 

Body Water 75 

Body Fat 81 

Anthropometric Measurements 93 

Changes in Body Composition with Aging 108 

SUMMARY 114 

LITERATURE CITED 117 

ACKNOWLEDGMENTS 135 



www.manaraa.com

iii 

Page 

APPENDIX: DATA SHEETS FOR BODY VOLUME DETERMINATIONS 136 

Form 1: Bottle Data 136 

Form 2: Subject Data 137 



www.manaraa.com

1 

INTRODUCTION 

Various indices have been developed for the evaluation 

of the nutriture of individuals and population groups. Re­

cently, the estimation of body composition in terms of water, 

fat, protein, and mineral content has become of importance in 

this connection. It is believed that knowledge of body com­

position may contribute to the evaluation of many disorders 

of nutritional origin and to the estimation of certain dietary 

requirements -- notably those for energy and protein. Fur­

thermore, knowledge of body composition may increase the 

reliability of estimations of other indices of nutritional 

status. 

For example, for many years height-weight relationships 

have served as an important criterion for nutriture especially 

in the clinical evaluation of obesity. Reliance upon standard 

height-weight tables may involve serious errors as has been 

shown with subjects with a large lean body mass (total body 

weight minus weight of fat) who, according to standard weight 

charts, were overweight but did not have excessive fat deposi­

tion. Welham and Behnke (1) have clearly demonstrated the 

inadequacies of height-weight tables for such classification 

and selection. 

Also, lean body mass, if estimated with reliability, may 

provide a more satisfactory reference for measurement of 

basal oxygen consumption and nutritional requirements than 
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factors customarily used, such as total body weight or 

surface area. If basal metabolism is expressed in terms 

of surface area for obese persons, the basal metabolic rate 

may appear to be subnormal; if expressed in terms of the 

fat-free body mass, the basal.metabolism may be higher than 

for persons of average weight. Miller and Blyth (2, 3) found 

lean body mass a better tool to use in prediction of basal 

oxygen consumption than either surface area or body weight. 

Several techniques for estimating body fat and lean 

body mass have been used ; density or specific gravity, total 

body water, extracellular water, and anthropometry including 

body weight, skinfold thickness, roentgenograms, and skeletal 

measurements. These methods have proved useful in classifying 

individuals as to degree of fatness. 

The estimation of fat from density, or specific gravity, 

is based on the assumption that lean body mass may be con­

sidered relatively constant and that the primary variable 

which determines individual body density is fat (4). The 

density of lean body mass is reported to be 1.100 gm per 

cubic cm and the density of fat approximately 0.900 gm per 

cubic cm. Lean body mass has been considered also tq be 

relatively constant with respect to percentages of body water 

(5). With this assumption measurement of total body water 

has been used as an estimate of lean body mass and the total 

body fat (6). 
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Skinfold measurements have been used as an indirect 

method and prediction equations for estimating fat from skin­

fold thickness have been prepared for men (7, 8) and one for 

women (9). 

Research on body composition of humans has been con­

cerned primarily with men, and few, data are available from 

studies of the body composition of women. Therefore, it was 

planned to evaluate the body fat and lean body mass of women 

varying in size and age by several methods. Further, it 

was planned to examine the relationship existing between the 

estimation of total body fat based on determinations of 

density and/or total body water and subcutaneous adipose 

tissue, estimated from skinfold thickness. 
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REVIEW OF THE LITERATURE 

The major gross constituents of the body are water, 

fat, mineral, and protein. Carbohydrates and other organic 

substances are present only in very small amounts. All body 

constituents are influenced by many factors, such as, 

nutritional habits, age, sex, genetics, and disease,. and 

undergo alterations during the life span. 

The measurement of the gross body constituents and their 

distribution in living subjects is limited by the fact that 

there are few adequate methods for their assessment. Total 

body water may be measured in vivo with a number of solutes 

by the dilution technique. Fat can be estimated from total 

body water or from the mean density of the entire body. 

Protein and mineral usually are listed together as fat-free 

solids and calculated by subtracting the total body water 

and fat from the total body weight. All methods for de­

riving total body composition have in common the fundamental 

relation that the sum of the proportional constituents by 

weight, or volume, must equal unit weight or volume; that is, 

fat + water + protein + mineral = 1. 

Direct Analysis of Human Cadavers 

There are a few studies available for reference from 

direct analysis of cadavers, but most of these analyses were 
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on cadavers which would not be considered normal because of 

the circumstances leading to death. The data available have 

been summarized by Keys and Brozek (10). Of 5 cadavers, 

only 2, a 42-year-old female and a 46-year-old male, were 

considered to be healthy individuals. The data suggest a 

large variation in the ash to protein ratio that may be 

present in the population at large. 

The exact meaning of mineral or ash content is not 

always clear in reports of analysis of body composition. 

If mineral, which includes only inorganic crystalline mate­

rial, is reported then probably it is confined wholly to 

bone. Total ash includes some material that should be 

regarded as constituents of proteins. Bone accounts for 

only about 85% of the body's total mineral store while 15% 

of the inorganic salts are present in the fluid spaces and 

as metals associated with protein. On the basis of mineral 

analysis the density of bone is estimated at 3 gm per cubic 

cm (11). For most purposes in estimating total body com­

position by direct analysis protein is considered to contain 

16% nitrogen, and a gram of nitrogen obtained corresponds to 

6.25 grams of protein. In densitometric analysis knowledge 

of protein density is essential in deriving formulas. Siri 

(12) suggested that 1.34 gm per cubic cm is the best avail­

able estimate of density of protein in the living cell and 

calculated the combined mineral protein density of the body 
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as 1.66 gm per cubic cm. 

Body Water . 

Water constitutes the largest per cent of the total 

body composition; it varies from approximately 38 to 72% 

of the total body weight. Water is distributed in two major 

fluid compartments--intracellular fluid and extracellular 

fluid. Intracellular fluid is found within the cells, and 

the proportion of water may vary among cells of very dif­

ferent tissues. It is computed as the difference between 

extracellular and total body water. There is presently no 

method available for measuring intracellular fluid. 

Extracellular fluid varies from approximately 15 to 20% 

of the body weight, is found outside the cells, is widely 

distributed throughout the body, and serves many functions. 

It is distributed chiefly throughout the interstitial spaces 

of tissues and organs and in the blood and is contained in the 

lymphatic system, intestinal tract, cerebro-spinal fluid, 

and in small amounts in renal glomeruli and tubules and 

vesicles of glands. Fluid in the renal pelvis, ureters, 

and the bladder are not regarded as part of the total body 

water because the water has been separated by the kidneys 

from the body's functional water pool and no longer takes 

part in physiological processes associated with water 
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metabolism. 

Water diffuses rapidly from one space to another, but 

in health and under normal conditions no large net shift in 

water occurs. The rapid transfer of water between fluid 

spaces has been demonstrated with deuterium or tritium 

labeled water; when these isotopes were given intravenously, 

their concentration in serum decreased rapidly until equi­

librium was reached in the whole body water (13, 14). 

The turnover of water with the external environment is 

slower than the transfer rates between fluid space. Schloerb 

et al. (13) reported that deuterium labeled water was lost 

from the body with a half time of about 9 days or turnover 

of about 13 days. Any factor which altered the rate of water 

excretion changed the turnover time, although the total 

quantity of water remained the same. Pinson and Anderson 

(14) found that in 1 subject given large amounts of water 

the rate of turnover was about 2 1/2 days. 

The amount of water relative to body mass in the nor­

mally hydrated body is dependent primarily upon the quantity 

of depot fat and diminishes with increasing obesity. The 

range is approximately from 38 to 72% of the body weight. 

In obese people water has been found to constitute as little 

as 38% of the body weight (12) while in extremely lean 

people total body water was about 72% of the body weight 

(15). 
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The proportion of total body water in humans has been 

found to decrease rapidly from birth to 1 year of age, from 

about 80 to 60% of the body weight (16, 17). Women and men 

differed in the rate of change of body water up to about 20 

to 25 years of age, with an increase in water content for men 

and a decrease for women (12, 18). At about 20 years of age 

the total body water of men began to decrease slowly with 

age. These differences have been attributed to difference 

in type of fat with age and sex. 

Total body water may be estimated from specific gravity 

or density of the whole body, from naturally occurring , 

or may be measured directly by the use of test solutes. Many 

substances have been suggested as test solutes for estimation 

of total body water, but most of them have been found un­

satisfactory except for water labeled with either deuterium 

or tritium and antipyrine or its derivatives. Nitrogen-15-

labeled urea has been used in a few animal studies but rarely 

used in humans and has not been tested to any extent. Other 

compounds which have been used but found to be unsatisfactory 

have been unlabeled urea, potassium, thiourea, sulfanilamide, 

alcohol and glycerol. 

For a test solute to be suitable for measurement of 

total body water it must have a minimum rate of metabolism 

or excretion as compared to the rate of distribution in the 

body water, penetrate rapidly and have equal distribution 
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throughout the fluid space of the body, have no accumulation 

in non-fluid sites, such as uptake in fat, have no toxic 

effects in amounts required for accurate measurement in 

blood or urine, and be readily and accurately measurable. 

Antipyrine (2, 3-dimethyl-l-phenylprozolone-5) was 

introduced into medicine in 1884 and was originally employed 

for antipyresis and later prescribed for analgesia; it has 

been used widely since 1949 in determining total body water. 

The pharmacology and toxicology of antipyrine have been 

reviewed in a monograph by Greenberg (19). The substance 

has been found to be relatively nontoxic in the amount 

required for body water determinations, quickly and uniformly 

distributed throughout the body tissues and fluids of nor­

mally hydrated humans and other mammals, and readily mea­

sured in the amount required (20-22). It is metabolized at 

varying rates in different individuals; but the disappearance 

rates are constant in each individual, thus allowing cor­

rection to be made by extrapolation of plasma levels to time 

of injection. 

Soberman et al. (20) reported that after intravenous 

injection in humans, antipyrine was excreted slowly, and the 

degradation rate was 6% per hour, varying in different sub­

jects from 1 to 12%. Uniform distribution could be obtained 

in the normally hydrated person in 1 to 2 hours. 

Varying doses of antipyrine have been used, but 
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generally a total of 1 gm antipyrine is given intravenously 

in a 20 ml sterile water solution over a period of 2 to 5 

minutes. Blood samples are taken before injection and at 

suitable intervals, usually. 2, 4, and 6 or 2, 3, and 5 hours, 

after injection to estimate the disappearance curve. Plasma 

or serum is separated by centrifugation and is stable for 

several days at refrigerator temperature. The body water is 

calculated as: 

liters of body water 

amount of antipyrine injected (mg) 
conc. in plasma water at zero time (mg/liter) 

Plasma concentration at zero time is the concentration which 

would have resulted at the time of injection if uniform dis­

tribution had been instantaneous and if none of the antipyrine 

had been metabolized or excreted. The zero time is calculated 

by plotting the plasma levels of antipyrine on the arithme­

tical scale and projecting the line drawn through the points 

back to the time of injection. The three points of the 

plasma levels should fall on a straight line. The concen­

tration of the antipyrine in plasma is calculated by 

dividing the plasma level of antipyrine at zero time by 

the per cent water in the plasma. 

One of the most widely used methods for assay of 

antipyrine in blood is that of Brodie and co-workers (21). 
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The method consists of deproteinization of plasma filtrate 

with zinc hydroxide, and the antipyrine concentration 

determined spectrophotometryally by extrapolation between 

standards prepared from serial dilutions. 

N-acetyl-4-aminoantipyrine (NAAP) has also been used to 

estimate total body water. Brodie et al. (23) found NAAP 

to have an advantage over antipyrine because unlike antipy­

rine it is not bound to any appreciable extent to proteins; 

its metabolism is negligible ; it is excreted slowly; and 

urine samples may be used, thus avoiding numerous blood 

samples. Comparison of NAAP and antipyrine in 12 subjects 

gave good agreement. Two methods have been used for mea­

suring total body water in man with NAAP. One was similar 

to that of antipyrine (23). The second involved a single 

measurement of plasma concentration and the measurement of 

urinary excretion 3 hours following administration of NAAP 

(24). In this procedure, the total body water was calculated 

thus: 

liters of body water = 

[amount of drug injected (mg) - amount excreted (mg)] 

divided by concentration in plasma water (mg/liter). 

Another derivative of antipyrine, 4-aminoantipyrine, was 

used by Huckabee (25) to measure total body water. He found 

close agreement between antipyrine and 4-aminoantipyrine in 
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8 humans; the averages were 50.2 and 49.4% respectively, of 

body weight as body water. Talso et al. (26) compared anti-

131 
pyrine, NAAP and I -labeled 4-iodoantipyrine and found for 

16 subjects an average of 49.7%, 50.6% and 50.6% body water 

by the three methods, respectively. 

Deuterium is a stable isotope of hydrogen of atomic mass 

two; it combines with oxygen to form deuterium oxide (D^O), 

which has a molecular weight of 20. When D^O is mixed with 

water, the deuterium in D^O readily exchanges with hydrogen 

in water to form HDO, which has a molecular weight of 19 

(27). Hevesy and Hofer (28) and McDougall et al. (29) in 

1934 reported the use of deuterium for measuring total body 

water in man and in rats, respectively; at that time the 

isotope was not readily available, was expensive, and 

reliable instruments were not available for analysis of 

deuterium. At the present time HDO is available at moderate 

cost and satisfactory instruments may be obtained. 

Deuterium oxide has been given both by mouth and by 

intravenous infusion (30, 31); generally 100 cc have been 

administered. In healthy persons, equilibrium was reached 

in 1 to 2 hours (13, 18, 32). The concentration of deuterium 

has been determined both in the venous blood serum and the 

urine (30, 33). When deuterium labeled water was ingested, 

equilibrium was reached in less than twice the time that was 

required by intravenous injection (13). 
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Two methods have been most widely used for assay of 

deuterium: the mass spectrometer and the falling drop 

method. 

The falling drop method depends on the slight in­

crement in density contributed to water by deuterium (27, 

32, 34, 35). Direct estimates of the sample HDO concentra­

tion are made by comparison with the rate of fall of drops 

from serial dilutions of the original stock solution. Water 

of unusual purity is essential. Serum is easier to purify 

than urine, since serum water can be purified in a 2 stage 

vacuum distillation train while urine must be purified by 

chemical purification as well as multiple distillation. 

Schloerb et al. (32) were able to obtain an accuracy of 

± 0.5% standard deviation in determination of volume per cent 

HDO in serum samples by the falling drop method; this corre­

sponded to ± 200 cc of total body water for a lean adult. 

They estimated an overall error of ± 400 cc; this did not 

include the error due to hydrogen exchange. In 1955 Faller 

et al. (36) described a falling drop method that was suitable 

for urine analysis. 

The mass spectrometer is considered the most sensitive 

method for measuring deuterium concentration but the cost of 

the instrument and its maintenance are very high (21, 37). 

The instrument was developed primarily to measure stable 

isotopes. A procedure was given in detail by Soloman and 
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Soloway (37). The total error, except for hydrogen exchange, 

in the total body water determined was estimated to be about 

± 1% of body water, or about ± 400 cc in a lean 70 kg man. 

This was the same degree of magnitude as Schloerb et al. (32) 

reported for the falling drop method. 

Tritium also has been used for the measurement of body 

water. It is the radioactive isotope of hydrogen which has 

a mass of 3 and combines with oxygen and hydrogen to form 

HTO which has a molecular weight of 20. Tritium has a half-

life of about 12 years and emits soft beta particles of 18 

Kev maximum energy with an average of 5.7 Kev (38). Tritium 

is assayed by detection of beta particles emitted in the 

3 
course of radioactive decay to helium, He . Pinson and 

Anderson (14) reported that the biological half time of 

tritium equals 9 to 14 days, but its half time in the body 

could be reduced to about 2 1/2 days by increased consumption 

of water (14). Because of its low energy of radiation, 

tritium is one of the most difficult of all radioactive iso­

topes used in tracer applications to measure. In general, it 

is necessary to place the tritium from a biological sample 

directly into the sensitive region of a radiation-detecting 

device in a form that voids self-absorption. 

The possible routes of tritium oxide entry into the body 

were studied extensively by Pinson and Langham (39). Ingested 

tritium was completely absorbed from the gastrointestinal 
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tract and appeared in the venous blood 2 to 9 minutes fol­

lowing ingestion, reached maximum concentration in 45 minutes 

and equilibrium in about 2 hours. Tritium may be given 

either orally or intravenously. Pinson and Langham (39) 

estimated the maximum permissible body burden of tritium in 

human adults to be 3.7 mc; -but generally less is used for 

determination of total body water. Tritium doses reported 

in the literature varied from 0.2 to 3.2 mc. 

Siri (12) reported that it is not necessary to estimate 

a disappearance curve since the turnover for tritium is in 

the order of 13 days; several fluid samples are taken within 

the first six hours and the tritium specific activity is 

analyzed. In patients with edema or ascites, equilibrium 

takes place less rapidly, and specimens should be taken 

during and between 8 and 24 hours after administration of 

tritium. The values must then be extrapolated to time of 

administration to compensate for the disappearance of 

tritium, which is about 1% per day. 

Several methods and instruments have been used for 

estimating tritium. The Gieger-Muller counter was used in 

early studies by Pace et al. (40), but the counter tubes do 

not tolerate appreciable quantities of either water vapor or 

hydrogen. It is considered to be the least desirable in­

strument for measuring tritium in urine or blood samples. 

The proportional counter is found to be fairly successful 
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when tritium is incorporated into an organic gas that does 

not interfere with the operation of the counter. Methods 

for assaying tritium using the proportional counter have 

been described by Robinson (41), Kennedy (42), and Christman 

(43). Several methods employing an ionization chamber have 

been described by Wilzbach and co-workers (44, 45), 

Eidinoff et a_l. (46), and Prentice et al. (47). 

The liquid scintillation counter appears to be the best 

instrument for measuring tritium, but it is also the most 

expensive because of its complex electronic circuits and 

maintenance. The liquid scintillation counter allows a small 

proportion of water that can be added to the liquid scintil­

lator without interfering with its function. Use of the 

liquid scintillator counter has been described recently by 

many investigators (48-54). 

Results of some of the studies where comparisons have 

been made between 2 or more methods for determination of 

total body water are summarized in Table 1. 

Pace _et _al. (40) found that results obtained by using 

tritium agreed well with those obtained by desiccation or by 

measurement of specific gravity when the 3 procedures were 

used for determination of the total body water of 2 rabbits. 

There was good agreement also between results obtained by the 

use of tritium and by the determination of specific gravity 

in the estimation of total body water of 1 male subject. 
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Table 1. Comparison of methods of analysis of total body water 

Ref. Subject % of total body weight as total body water 
no. Deuterium Tritium Antipyrine Desiccation Specific 

or NAAP gravity 

33 33 men 61.2 58.5 

55 1 man 39 .7a  36. ia 
(38.8-40.6a) (33.8-39.6a) 

1 man 45 .83  41 .8 a  

( 4 4 .4-47.2a) (38.6-43.9a) 

40 rabbit A 54.9 55.5 51.9 
rabbit B 58.4 55.9 54.7 
man 64.7 65.2 

22 monkey 1 62.8 66.4 
monkey 2 71.0 69 .8  
monkey 3 69 .4  71.6 
monkey 4 67.2 69 .9  
monkey 5 72.1 69 .4  
dog 1 75.7 71.3 
dog 2 63 .9  68.1 
dog 3 69.5 72.5 
dog 4 73 .9  72.5 

56 rabbit 1 74.6 75.8 
rabbit 2 68.8 69 .6  
rabbit 3 75.8 72.9 
rabbit 4 77.8 77.0 

57 9 rabbits 72. 8 73 .6  
(67.6-77.4) (71.4-75.8) 

^Reported as liters of body water not percent body weight. 



www.manaraa.com

Table 1. (Continued) 

Ref. Subject % of total body weight as total body water 
no. Deuterium Tritium Antipyrine Desiccation Specific 

or NAAP gravity 

58 30 cattle 54.3 
(43.9-63.0) 

54.5 . 
(44.9-62.5) 

59 6 cattle 

24 cattle 

52.5 
(45.4-61.0) 

54.4 
(43.9-63.0) 

51.9 
(46.2-59.2) 

54.1 
(43.1-63.3) 

60 24 hogs 46.8 
(36.7-64.5) 

44.1 
(33.8-59.6) 

20 

15 

woman 50 .3  49.5 
woman 42.0 39 .3  
man 53.9 51.5 
man 48.1 50.4 
man 56 .9  57.0 
man 55.2 55.0 
man 60 .6  55.0 
man 59.5 57.9 
avg. men 55.7 54.5 

81 men 61.1 
(43.0-72.9) 

61.0  
(44.0-72.0) 

61 9 men 53.9 
(43.3-60.5) 

54.3 
(44.0-72.0) 
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Table 1. (Continued) 

Ref. Subject % of total body weight as total body water 
no. Deuterium Tritium Antipyrine Desiccation Specific 

or NAAP gravity 

62 10 humans 56.2 54.6 
(49.3-67.1) (46.8-68.9) 

5 males 58.9 56.1 
(53.3-63.0) (52.4-61.4) 

63 9 humans 
(heart 
dis.) 47.6 46.8 

(35.9-62.8) (33.5-64.0) 

64 29 humans 
w/edema 64.2a 54.6a 

(40.6-83.2a) (36.0-66.0a) 
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Prentice et ad. (62) used both tritium and antipyrine for 

measurements of body water in humans ; the values obtained by 

the 2 procedures were similar although the per cent of body 

water estimated with tritium was slightly higher than that 

estimated with antipyrine. Deuterium, like tritium, also has 

been found to give slightly higher results than antipyrine 

in the determination of body water (20, 33, 55). In general, 

results obtained with the use of antipyrine have agreed 

fairly well with those obtained by desiccation or by specific 

gravity (58-61). However, Moore (57) found that, in studies 

of the body water of rabbits, results obtained using 

deuterium agreed satisfactorily with values obtained after 

desiccation. 

Both tritium and deuterium form ideal solutions with 

water, diffuse throughout the body at a rate similar to 

water, and show no isotope effect on excretion and metabo­

lism; the distribution of the 2 isotopes in the body is 

similar to that of water. After equilibrium, the concen­

tration of deuterium in the urine, gastric juice, 

cerebrospinal fluid, and sweat was identical to the con­

centration in the serum (28, 32). Tritium also has been 

found to concentrate equally in the serum, urine, sweat, 

and expired water vapor by Pinson and Anderson (65). The 

turnover time for deuterium (32) and tritium (12, 66) is 

the same as for the total body water estimated from water 
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balance, about 13 days. 

Since results obtained by the measurement of total 

body water with deuterium and with tritium have exceeded 

slightly those obtained using antipyrine, the possibility 

exists that there is an over-estimation of body water by 

the use of deuterium or tritium. This may result from the 

exchange of hydrogen in water with the labile hydrogen atoms 

in cellular materials (67). Hevesy and Jacobsen (68) esti­

mated labile hydrogen to be equivalent to about 0.5 to 2.0% 

of body weight. Schloerb et al. (13) reported that deuterium 

gave values for total body water of about 2% of the body 

weight greater than actual values ; Prentice et al_. (47) 

estimated an error of about 1 to 2% of body weight from 

studies on rabbit tissue. Concurrent measurements with 

antipyrine and deuterium (20, 33, 55) and with antipyrine 

and tritium (62) gave higher values for deuterium and tritium 

than for antipyrine by about 2%. 

Although antipyrine appears to be slightly soluble in 

fat and fat solvents (19), the customary procedure of 

extrapolating the plasma disappearance curve should com­

pensate for the absorption of antipyrine in fat as well as 

for its degradation and excretion. In a comparison of anti­

pyrine spaces with those of deuterium over a period of 2 

months in 2 human subjects, Ljunggren (55) found that the 

variability of the deuterium spaces was l<_ss than those of 
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antipyrine. The coefficients of variation were 1.8 and 2.0% 

for the deuterium spaces and 4.5 and 5.4% for the antipyrine 

spaces for the 2 subjects, respectively. Antipyrine has been 

shown to be suitable for measuring total body water in nor­

mally hydrated bodies, but it is not considered reliable 

for measurements of total body water in patients with edema 

or ascites since its rate of diffusion is relatively slow. 

In these conditions, measurements of total body water with 

deuterium and tritium are considered more reliable than mea­

surements with antipyrine. 

Deuterium and tritium require special apparatus for 

measuring where antipyrine does not, but both can be measured 

with greater accuracy than antipyrine except that labeled 

water over-estimates total body water as mentioned above. 

Advantages in the use of deuterium and tritium are that the 

substances can be given orally and assayed in the urine, 

thus there is not the inconvenience of venous punctures. 

At the present time, iri vivo measurements of extracel­

lular fluid can be made only by solute dilution techniques. 

The solute which is used must be a substance that diffuses 

rapidly across capillary membranes but is excreted slowly, 

strictly barred from diffusion through cellular walls, and 

is not metabolized to any large extent. 

Attempts have been made to measure extracellular fluid 

with various compounds but only a few have the necessary 
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Table 2. Comparison of methods of analysis and solutes used in 
fluid 

Ref. Subject 
no. Inulin 

Per cent of body weight a 

Thiocyan. Thiosulf. Bromide 

69 man 1 
man 2 
man 3 

21.7 
40.1 
34.1 

70 4 men 15.2-25.3 

71 4 men 
10 dogs 

9.5-16.0 19.2-24.0 
20.3-23.2 25.8-35.5 28.1-32.7 

72 4 men 15.2 
13.3-17.3 

26.9 
20.4-32.4 

73 man 1 
man 2 
man 3 

10.5* 
10.9* 
11. la 

74 24 humans 6.4-12.7a 8.1-14.6'  

75 14 women 8.6-15.Ie 

76 man 1 
man 1 
man 2 
man 3 
man 4 

man 5 
man 6 
man 7 
29 men 

14.3 
14.9 
16.8 
14.2 
15.8 
16.0 
16.5 
18 .0  
16.1 
16.2 

22.2 
24.1 
21.6  
21.6  
24.5 
26.8 
25.3 
27.5 

24.0 

20.6 
21.3 

25.7 

77 

78 

14 humans 

5 humans 
10 humans 

18.8 e  

16.7: 
15.8e 

^Reported as liters of extracellular fluid, not percent bod> 
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analysis and solutes used in the determination of extracellular 

Per cent of body weight as extracellular fluid 

cyan. Thiosulf. Bromide Sucrose Cl38 

.7 

.1 

.1 

21.5 
36.1 
30.0 

15.2-23.8 

-24.0 
-35.5 28.1-32.7 

26.9 
20.4-32.4 

26.7-33.0 

10.8a 
10.8a 
10.3a 

8.1-14.6a 

8.6-15.13 9.2-13.8a 

24.0 26.4 

20.6 27.0 
21.3 

26.4 

25.7 

18.8a  

16.7a 11.6a 16.7a 15.6a 
15.8a 15.4a 

illular fluid, not percent body weight. 
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Table 2. (Continued) 

Réf. Subject Per cent of body weight as e 
no* Inulin Thiocyan. Thiosulf. Bromide Sue 

79 9 dogs 9.8-14.53 

80 19 dogs 20.4 24.6 
18.0-24.3 21.1-30.8 

81 1 dog 18.5 
2 dogs 
4 dogs 

82 dog 1 19.0 35.5 
19.8 34.3 
18.7 
18.7 34.5 

dog 2 19.5 32.0 
17.6 
18.4 29.9 
17.5 34.4 

dog 3 20.3 32.5 
20.1 30.7 
20.1 28.5 

dog 4 19.1 25.8 
19.8 

dog 5 19.9 31.6 
17.6 
19.0 31.2 
18.2 35.6 
20.4 39.8 
20.8 37.5 
21.4 40.0 

dog 6 21.8 33.7 
18.9 30.2 
19.6 33.9 

dog 7 19.3 38.0 

dog 8 19.8 35.0 
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Per cent of body weight as extracellular fluid 

)cyan. Thiosulf. Bromide Sucrose S35 Na24 Cl38 

8.8-13.9' 

24.6 
21.1-30.8 

27.7 
21.1 19.5 
24.3 23.3 

31.4 
27.0 
27.5 

31.0 
32.4 

26.7 

33.0 

30.5 

30.5 

33.7 

31.6 
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characteristics. Table 2 presents a summary of data obtained 

for studies in which different solutes have been compared. 

Sodium-24 (77), chloride-38 (83, 84) and bromide (85, 86) 

have been used unsuccessfully since these substances pene­

trate the tissue cells. Sulfanilamides were found to be 

unsuitable as solutes (87). Thiosulfate has been used (88, 

89) but has been found to be rapidly excreted (90, 91). 

Inulin probably gives the most reasonable results for 

the estimation of extracellular water although constant 

infusion of the compound is required. Inulin does not pene­

trate red blood cells, cells of the normal renal tubules or 

cells of tissues. It does not affect fluid balance between 

compartments, is lipid insoluble, is not metabolized appre­

ciably, and can be quantitatively recovered in the urine 

(71, 92, 93). Inulin has a large molecular weight of 5101 

(94), and its entry and distribution into the whole extra­

cellular space is slow while it is rapidly excreted; 

therefore equilibration of inulin cannot be achieved with 

administration of a single dose except in renal insufficiency 

and in nephrectomized animals. The method used, therefore, 

must be one of continual infusion into a vein until the serum 

level remains constant. A steady state is reached in two 

hours in dogs and in about 6 hours in man (71). This method, 

as well as all the others mentioned, is not suitable in the 

presence of edema or ascites. 
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The use of sulfur-35 provides a method that is simple 

and rapid; it has been found to agree closely with inulin 

(72, 79, 95). A single dose of 100 mc of carrier-free 

is injected intravenously as HgSO^ and the blood level of 

35 
S then followed for 5 to 6 hours. 

Sucrose has generally been found to give too high 

results (69, 96), but Deane et al. (70) found good agreement 

between inulin and sucrose in measurements on men. Mannitol 

was found to give slightly high results by Elkinton (97) who 

reported mannitol space in 8 normal humans to be between 

17.1 to 25.5% of body weight; he was able to get full re­

covery of mannitol. Mannitol and sucrose both penetrate 

through capillary walls to a slight extent, are excreted 

rapidly, and are metabolized to some extent. 

Thiocyanate has been used widely. Bass and co-workers 

(98) made a study of the kinetic of diffusion per se in 25 

healthy young men and found that the optimal time of diffu­

sion of thiocyanate after intravenous injection was obtained 

in 2 hours. Thiocyanate does enter the red blood cells, 

gastric mucosa, and other tissues (69, 99), but Keys and 

Brozek (10) found that by using a factor of .7 to convert 

the thiocyanate space to extracellular space that the values 

for the extracellular space calculated from thiocyanate and 

inulin gave good agreement. 
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Body Fat 

Body fat varies more than any of the other major con­

stituents in the body. The relative amount of body fat may 

be an important factor in health and longevity. The estima­

tion of body fat promises to be a useful tool in studying 

obesity and inanition. 

There are several kinds of fat in the body. In general, 

the term body fat includes the total ether-soluble extract of 

tissues, that is, the phospholipids, glycolipids, sterols, 

and neutral fats or glycerides. Neutral fat makes up most 

of the so-called storage fat, obesity tissue, or non­

essential lipids. The lipids except neutral fat form an 

essential constituent of cell walls and protoplasm and are 

present in all tissue; these lipids remain nearly constant 

in cells and are not affected to any extent by changes in 

body weight. Behnke and co-workers (100) estimated the 

essential lipids as 2% of the lean body, but the total 

quantity of essential lipids has not been well established. 

Fat content varies widely; there are differences due to 

nutrition, sex, age, and diseases. Siri (12) found that 

storage fat varied over a wide range, from nearly zero in 

severe undernourishment to as high as 50% of body weight in 

clinically normal persons. Behnke et a_l. (100) reported a 

range from 1.5 to 38.5% of body weight as fat in a group of 
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Table 3. Per cent of body weight as fat in humans and animals 

Per cent body fat 
From 

sp. gr. 
From 

antipyrine 
Separable 

fat 

Ref. 
no. 

101 

Subject 

20 m. rats 

Dessication 
(ether extract) 

14.6 

102 68 rats 
458 rats 

24.2-36.1 
6.7-44.3 

103 51 m. rats 

51 f. rats 

18.1 
16.2-20.5 

20.1 
19.2-23.3 

104 rats 
guinea pigs 
rabbits 
cat 

9.0 
10.0 
7.8 
7.9 

105 3 rabbits 

2 dogs 

2 monkeys 

2.5 
2.5-3.0 

6.5 
14.6-25.6 

6.5 
2 .0 -11 .0  

106 7 rats 15.3 
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Table 3. (Continued) 

Ref. 
no. 

Subj ect 
Dessication 

(ether extract) 

50 guinea pigs 12.3 
1.5-35.8 

40 rabbit 1 
rabbit 2 

58 30 cattle 

59 30 cattle 25.7 
14.4-39.3 

60 24 hogs 

61 

15 

9 humans 

81 men 

Percent body fat 
From 
sp. gr. 

From 
antipyrine 

Separable 
fat 

29.1 
25.3 

24.9 
13.9-38.2 

25.2 
13.2-39.5 

26.3 
13.9-40.1 

26.7 
13.5-41.1 

25.2 
13.6-39.5 

40.8 
19.9-54.5 

36.7 
12.0-49.9 

38.4 
17.8-53.1 

25.3 
17.0-39.0 

25.6 
16.3-41.5 

15.0 
0.0-38.4 

15.0 
0.0-40.1 
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young naval personnel. 

Estimation of body fat 

Fat may be estimated indirectly by a number of methods, 

for example, by determination of specific gravity or density, 

total body water, potassium-40, or fat soluble gases, by 

skinfold measurements, or by a combination of procedures. 

The direct measurement of fat is a laborious procedure which 

has been rarely carried out in man or other animals of com­

parable size; the data on small laboratory animals are also 

few. Data available on human cadavers have been summarized 

by Keys and Brozek (10). Data which have been reported on 

the fat content of laboratory animals are summarized in 

Table 3. 

The desorption or absorption of gases, for example, 

nitrogen and cyclopropane, has been used with some success 

to determine the amount of fat present in animals. Nitrogen 

exchange has been investigated the most thoroughly. 

Nitrogen is 5 times more soluble in fat than in tissue 

fluids and is washed out of the fat depot at a slower rate 

than from the rest of the body when oxygen is inspired (107). 

Fat is estimated indirectly from nitrogen by observing the 

nitrogen elimination curve for a sufficiently long time until 

its rate of washout corresponds to its removal from fat 

alone. 
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Lesser et al. (108) investigated the use of cyclopropane 

in rats. The gas is 26 times more soluble in fat than in 

tissue fluids ; therefore the differential rates of absorption 

are easily measured. The authors reported good agreement 

between fat estimated from cyclopropane and fat determined 

by ether extraction in 10 rats ; the mean fat content from 

both analyses was 13.2% fat. Cyclopropane has not been 

tried in man, since for man the gas concentration cannot be 

greater than 5% in air to be safe. 

Determination of body density 

Densitometry has been used as an indirect method for 

estimation of body fat. Since water, fat, protein, and 

minerals have different densities, this method appears 

practicable, if there is a predictable relationship among 

the constituents. The density of the body is defined as the 

total weight in air divided by the total volume. Body volume 

may be determined by underwater weighing or by a helium 

dilution method. The possibility of measuring fat by 

densitometry was recognized as early as 1901 by Stern (109) 

and in 1915 by Spivak (110), but they lacked means of ob­

taining accurate density measurements and had no means of 

direct estimation of fat. 

In 1941, Behnke (4) suggested that total body fat could 

be estimated from the specific gravity of the body. Data 
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obtained by specific gravity measurements and direct mea­

surement of fat in small mammals by Pace and Rathbun (5) 

supported this concept which has been validated in guinea 

pigs (6, 111) and albino rats (102). 

The method first developed for measuring body density, 

that is, underwater weighing, was an adaptation of 

Archimedes' famous experiment in hydrostatic weighing. The 

modern application of this method to determine density was 

by Behnke et ad. (112) who also showed that there was a 

qualitative relationship between density and body fat. Later 

the method was refined further by Brozek et al. (113) by 

providing for the measurement of residual air at the moment 

that the underwater weight was obtained. The principle is 

the same as that of Archimedes' original experiment. The 

weight of the body in air minus its weight in water when 

totally submerged is considered to be equal to the volume of 

water displaced. The relationship between these quantities 

is expressed as: 

total density of the body = dwWa divided by (Wa-Ww), 

where equals the body weight in water, dw equals density 

of water at which W was obtained, and W_ equals body weight W d 
in air. This value for total body density is affected by the 

air left in the respiratory passages and lungs and gas in the 

gastrointestinal tract. Since these gas spaces constitute a 
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volume, V, at the moment the submerged body weight is taken, 

the true tissue density would be expressed by: 

d = (dw w a )  / (Wa - Ww - Vdw). 

Absolute residual air increases with age in clinically 

healthy men and women; means reported by Keys and Brozek (10) 

were for young men 1600 ml, middle age men 2200 ml, young 

women 1250 ml, and middle age women 1300 ml. In determina­

tion of fat from specific gravity data, residual air should 

be measured for each subject. 

There is no method for measuring the intestinal gas 

volume, but several methods have been used for measuring 

the air in the respiratory system. In one procedure, the 

volume was measured before or after underwater weighing by 

forced maximal expiration. The residual air was about 1500 

ml which with practice was reproducible with a standard 

deviation of about ± 100 ml (12). 

Cournand et al. (114) described a method for obtaining 

the absolute value of residual air by volumetric analysis of 

nitrogen following wash-out with oxygen in an open-circuit 

system. Following maximal expiration, or immediately fol­

lowing weighing if an underwater measurement is made, the 

subject inhaled oxygen and the expired air was collected in 

a Tissot gasometer or Douglas bag. The residual air volume 

was calculated from the total volume and the nitrogen 



www.manaraa.com

34 

concentration of the expired gas collected for a 7-minute 

interval. Brozek et al. (113) modified the method of 

Cournand et al_. (114) so that residual air could be mea­

sured at the same time as the underwater weighing. 

Helium has been used also to estimate residual air (115, 

116). This method involves the inhalation of a helium-oxygen 

mixture which is washed out of the lungs by inhalation of air 

or oxygen and its volume measured. 

Gas in the gastrointestinal tract is usually disregarded 

in correcting body density for residual gas. Siri (12) 

estimated that for an uncertainty of 100 ml in the volume of 

a 70 kg subject whose density is 1.050 gm per cubic cm and 

residual air of 1500 ml, the error in density would be ,15% 

and would be acceptable for most purposes. This volume of 

gas might exceed several hundred ml although the subject 

would probably be in apparent distress and thus disqualified. 

Specifications for the tank, scales, and necessary 

equipment for underwater weighing have been reported by 

Miller (117). The subject is on a seat which is suspended 

from a scale hook ; the subject with breath held in maximal 

expiration is submerged until only the scale hook remains 

above the water level. The scale is unhooked and the sub­

merged weight recorded; the scale is locked again and the 

subject brought to the surface. The procedure requires 10 

to 15 seconds. 
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Several attempts have been made to measure body density 

or volume by methods that could replace the underwater 

weighing technique ; the only procedure described in the 

literature with estimations of reliability and reproduci­

bility is the helium dilution method developed for human 

subjects by Siri (118). Walser and Stein (119) have also 

used helium displacement for obtaining density in intact 

animals. Body volume was determined from the dilution of 

helium in a chamber by a quantity of air that varies 

inversely with the volume of the subject. The apparatus 

developed by Siri consists of two chanbers connected to form 

a closed system. Since helium comes to equilibrium in the 

air spaces (lungs and respiratory tract) in less time than 

was required to mix the gases in the chambers, no correction 

was required for these factors. Helium is absorbed in tis­

sues and fluids but Siri (12) estimated that the error was 

cancelled by the fact the gas in the gastrointestinal tract 

was about 100 ml, as mentioned previously, and was nearly 

equivalent to the amount absorbed in the body fluids and 

tissues. 

The densitometric method depends upon the accuracy in 

obtaining density and upon the correctness of densities of 

the fat, water, protein, and mineral in the body measured. 

The method for obtaining density must be very accurate 

because the range of density extends only from about 1.1 gm 
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per cubic cm to less than 1 gm per cubic cm which is a range 

of about 10% while fat varies from nearly zero to about 50% 

of total body weight. Since the difference in the density 

of fat and water is very small, the large variation in their 

proportion produces only small changes in total body density. 

Prediction of body fat from density 

The density of fat, water, protein, and mineral in 

animals and in humans has been studied; the best values for 

the densities of these tissues in adult humans appear to be 

the following: 

density of fat = .9000 gm per cubic cm at 37°C (120) 

density of water = .993 gm per cubic cm at 37°C (121) 

density of protein = 1.340 gm per cubic cm at 37°C (122) 

density of mineral = 3.000 gm per cubic cm at 37°C (11) 

The density of fat varies among animals of different species 

(120) and among the same species with alterations in the diet 

and environment. Density varies with temperature, therefore 

it is important to know the density of the fat at the temper­

ature of the densitometric measurement. Fidanza et al. (120) 

found for adult humans the mean value for the density of fat 

to be .9000 gm per cubic cm at 37°C, with a range from .8992 

to .9009 gm per cubic cm. At 36°C the mean density of fat 

was .9007 gm per cubic cm. The value .9179 gm per cubic cm 
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which was used by Rathbun and Pace (6) was correct for 

15°C but not for the temperature at which the bodies were 

measured. 

One method for the prediction of fat from body density 

is based on the relationship: f = -g- + b where a and b are 

constants and d is whole body density. An equation obtained 

by Pace and Rathbun (5) from studies on guinea pigs, whose 

specific gravities were determined by underwater weighing 

and fat determined by extraction with petrol ether, was as 

follows: 

% = 100 - 4.694). 

The equation proposed by these same workers (6) for humans 

was: 

% fat = 100 (5'548 _ 5.044). 
ojj ê y-L « 

These constants were derived for a lean-body mass with a 

specific gravity of 1.100 gm per cubic cm and a human fat 

density of 0.918 gm per cubic cm. Since this equation is 

based on density of fat at 15°C instead of 37°C which is 

usually used for underwater weighing, Keys and Brozek (10) 

suggested as constants: a = 5.120 and b = -4.684. Although 

the modified equation gives a better estimate of body fat, 

the assumption is still inherent that the proportions of the 

body constituents are either constant or exactly predictable. 
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That is, the prediction is based on the assumption of a basic 

lean body of fixed density to which is added fat of a con­

stant composition and density. 

Keys and Brozek (10) modified this equation further to 

permit estimates of difference in fat content. The constants 

were adjusted to represent the difference in fat between the 

subject and that of a standard man. The constituents were 

derived on the assumption that obesity tissue consists of 

62% fat, 14% extracellular fluid, and 24% cellular matter 

with a density of 0.9395 gm per cubic cm. The difference in 

fat is then given by the equation: 

A fat = 5.427 _ 5-106i 

These factors are still dependent upon the assumption that 

the composition of fat remains constant over the obesity 

range. 

The following equation for estimating fat: 

fat = 4.950 _ 4<500. 

was derived by Siri (123) who assumed that if the fat-free 

body was the correct reference then the density of the fat-

free body would be 1.100 gm per cubic cm and the density of 

fat would be 0.900 gm per cubic cm. Siri calculated the 

standard deviation in fat estimation by this equation as 

± 4.0% body weight. 
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The estimation of fat from density alone requires the 

assumption that all adult humans are identical in body com­

position except for differences in the amount of fat; since 

there is normal variability in body constituents, the 

accuracy of this assumption is limited. Even with the rec­

ognition of the limitations of the method, the use of 

densitometry in determining body fat was considered by Siri 

(12) to be the most reliable in vivo method when applied 

singly to the normally hydrated adult human; if there are 

gross differences from the normal in any of the constituents 

except fat, the equation may no longer be valid and thus may 

not be used with reliability for patients with edema or other 

transudations. 

Prediction of body fat from total body water 

The amount of fat has been expressed as the difference 

between the fat-free body mass and the total body mass. 

Studies by Murray (124) showed that the fat-free body had 

a substantially fixed composition. Behnke et a_l. ( 100) 

reported that the relationship between the amount of water 

and the amount of protein in the fat-free body was fairly 

constant. On this basis, it is assumed that it is possible 

to measure total body water and to estimate fat-free weight 

on the basis of the relationship of water to protein; from 

these data, total body fat can be derived. Minerals 
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represent only a small fraction of the body (125, 126), and 

small variations in the mineral composition would have a 

negligible effect on the results. 

The total water content of the leanest body and the 

fat-free body is estimated to be near 72% of the fat-free 

body weight. Theoretically, the lean body component of a 

person would be equivalent to the total body water divided 

by .72, and the percent of fat would be equivalent to 100 -

139w, where w is the per cent of body water. Since the body 

cannot be regarded as a lean mass on which pure fat or 

obesity tissue of fixed composition is added, the use of 

these factors is not wholly valid. 

Keys and Brozek (10) reported that obesity tissue con­

tained 62% fat, 31% water, and 7% protein; this relationship 

could be expressed as: 

w = .72 (1 - f/.62) + (.31/.62). 

From these values, Siri (12) derived the equation: 

f = 1.00 - 1.51w. 

Rathbun and Pace (6) analyzed 50 eviscerated guinea 

pigs and found that water accounted for a mean of 72.4% of 

the fat-free mass with a standard deviation of ± 2.11%. 

There was a range from 68.2 to 76.6% body water of the fat-

free weight for 90% of the guinea pigs. A wider range in 
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percentage water would probably have been found if the 

viscera had been included in the determinations. Rathbun 

and Pace (6) summarized the data for guinea pigs along with 

other data on rats, monkeys, cats, dogs and rabbits and found 

that the mean per cent water in the fat-free body ranged from 

69.9% for dogs to 16.3% of the body weight for rabbits. 

The data on man are scanty; but. from the desiccation of 

2 normal subjects reported by Widdowson _et al. (127) and 

Forbes et al^ (125), it appeared that the human adult fat-

free body contained between 68 and 75% water. McCance and 

Widdowson (128) concluded that the fat-free adult human body 

has an average of 71% water while Pace and Rathbun (5) sug­

gested a mean of 73.2% water. Osserman et al. (15) studied 

81 normal men from 18 to 46 years of age and found that the 

per cent water content, estimated by antipyrine, ranged from 

66.3 to 79.0% with an average of 71.8% of the total fat-free 

body weight. This value was obtained by calculating the per 

cent fat from specific gravity and then the per cent water 

in lean body mass from the antipyrine results. They used the 

following equation to estimate fat content from per cent 

water: 

% fat = 100 I71"8 ' Si°aY weiclht). 

Percentages of body weight as fat calculated from 

specific gravity and from body water determinations using 
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antipyrine and a mean of 71.8% water in lean body mass agreed 

closely in most subjects. For 10 subjects, however, dif­

ferences in estimation by the 2 methods were greater than 

5%. 

Prediction of body fat from density and total body water 

Bases for the prediction of fat from determinations of 

body density and of total body water have been derived by 

Keys and Brozek (10) and Siri (12, 123). The relationship 

can be expressed by the general equation: 

d r do dc - d 

where _s represents non-fat solid. This equation was 

developed from the basic premises that the sum of the 

proportion of the principle body constituents equal unity, 

that is, 1 = w (water) + f (fat) + p (protein) + m (mineral) 

and that the sum of the fractions of constituents and their 

respective densities equal the density from the whole body; 

Thus, it may be hypothesized that the quantities of any 2 

substances may be derived from the body density and direct 

measurement of the other 2 constituents. Since only 1 con­

stituent (total body water) other than fat, can be measured, 
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protein and mineral were combined as a single compartment and 

termed non-fat solid (s = p + m). Siri (123) substituted 

values for densities in the above equation and derived the 

following expression: 

f = (2.118/d) - .780w - 1.354. 

The values used by Siri for the density of fat and water at 

body temperature were .900 gm per cubic cm and .993 gm per 

cubic cm, respectively. The density of solids used was 1.565 

gm per cubic cm. Siri estimated the total overall error due 

to density and water measurements and error due to the 

density value of non-fat solid and found a standard deviation 

in fat equal to ± 2.0% of the body weight. This combined 

method, therefore, gives less error than estimates from 

density, or water separately, and can be used for patients 

with edema and ascites. 

Prediction of body fat from density and extracellular fluid 

Keys and Brozek (10) derived an equation for estimating 

fat in terms of body density and extracellular fluid and ex­

pressing the fat as the difference in fat between the 

reference man and a subject. The equation was: 

A f = (5.359/d) - .256T - 4.982, 

where T equals the extracellular water fraction of the body 
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measured by thiocyanate. This equation is based on the fat-

free body as the reference standard and a value of 18% of the 

weight of the fat-free body as extracellular water. Ac­

cording to Siri (123) this equation takes into account pos­

sible abnormal hydration, but the reliability is limited due 

to the large uncertainty in measuring extracellular fluid 

and the normal variability in total body water and the 

mineral-protein ratio. These limitations may lead to an 

uncertainty greater than that in the prediction of body fat 

from density alone. 

Prediction of body fat from potassium-40 

Another method used recently to estimate lean body mass 

and total body fat involves the determination of total body 

potassium by whole-body scintillation counting of potassium-

40. Normal potassium found in the body is associated with an 

isotope, potassium-40, which is radioactive. The potassium 

is determined by measurement of the gamma-ray emission of 

potassium-40 in a human scintillation counter. The instru­

ment for measurement of total body potassium-40 is very 

expensive and, therefore, is limited in widespread and 

practical application of the procedure for estimating total 

body fat. A review of the literature covering this method 

has been presented by Anderson and Langham (129). In 1953, 

Reines et al. (130) reported the measurement of potassium by 
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whole-body scintillation counting of potassium-40. Since 

1953, the Biomedical Research Group of the Los Alamos 

Scientific Laboratory has been studying the use of whole-

body scintillation counting of potassium-40 in the measure­

ment of the gross body composition including fat. In 1956 

data collected with regard to the relationship among total 

body potassium, lean body mass as estimated from tritium 

data, and fat in humans were reported by Woodward et al. 

(131). 

In 1959, Anderson and Langham (132) extended their 

earlier report on humans and presented data for the potassium-

40 measurement on 1590 males and females ranging in age from 

less than 1 year to 79 years. Later, Allen et al. (133) re­

ported comparisons of lean body weights calculated from 

measurement of potassium-40, total body water, and body 

density. The agreement among the various methods was good 

with a standard deviation of ± 5%. 

Determinations of lean body mass and/or body fat from 

measurements of potassium-40 are based on the concept that 

total body mass has a constant potassium content. In 1956, 

Woodward et al_. (131) reported that the potassium (meq) per 

lean body weight was 63 meq per kg. In a later report by 

Anderson (134), allowance was made for the fact that fatty 

tissue contains about 20% water; on this basis, potassium 

per lean body weight was estimated to equal 73 meq per kg. 
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Forbes et al_. ( 135) have used 68.1 meq potassium per kg lean 

body mass to calculate values for lean body mass. 

Prediction of body fat from anthropometric measurements 

Lean body mass and body fat have been predicted from 

various anthropometric measurements, such as height, 

biacromial width, biiliac width, chest width, and the 

circumference of certain areas as the ankle, knee, leg, and 

arm; skinfold measurements and roentgenograms have also been 

used. 

Behnke et al.. (136) presented data for the estimation 

of fat in men from anthropometric measurements of the body 

trunk which included circumferences of the chest, abdomen, 

buttocks, and thighs and the extremities which included the 

circumferences of the biceps, forearm, wrist, knee, calf, 

and ankle, as well as the bideltoid diameter; fat was esti­

mated also from density determinations. In a related article, 

Behnke (137) described the estimation of lean body mass in 

male subjects from various combinations of "skeletal" dimen­

sions and x-rays of extremities and trunk areas and derived 

equations for estimating lean body mass. Comparisons were 

made between value for lean body mass predicted by these 

equations and those estimated from body density and total 

body water determinations; correlation coefficients ranged 

from .80 to .90. 
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Since the subcutaneous fat depot contains a large ~~ 

fraction of adipose tissue (10), it has seemed feasible 

that measurements of the thickness of skinfolds at selected 

sites may be used for an estimate of the degree of adiposity. 

Such a method for prediction of total body fat would be 

relatively inexpensive and more easily applied than other 

procedures, i.e., the estimation of body fat from total body 

water and density. Factors which have been studied in the 

investigation of the reliability of information gained from 

skinfold measurements have included the variation in the 

amount of subcutaneous fat at different body sites, the 

differences in distribution of subcutaneous fat between men 

and women, and the reproducibility of measurements. 

Edwards (138) obtained measurements of skinfolds for 

as many as 93 different body sites; this report has provided 

helpful information for the selection of particular sites 

for skinfold measurements. In addition, Edwards (139) deter­

mined the skinfold thicknesses in females and males ranging 

in age from 5 to approximately 50 years. He found that the 

distribution of fat in different parts of the body was 

similar for both sexes before puberty but that, after 

puberty, women had about 1.2 times as much subcutaneous 

fat on their legs as men and a total of about 1.7 times as 

much subcutaneous fat as men when all skinfold measurements 

were evaluated. Garn and Saalberg (140) also reported that 
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women had a higher per cent of fat on the legs than men and 

that there was an increase in the fat on the legs of women 

with an increase in age. Allen et al. (141) found that the 

thickness of the sites differed between men and women; his 

study included 58 men and 29 women in Formosa. Since there 

are differences in the distribution of subcutaneous fat 

throughout the body in adult men and women and since the 

distribution of subcutaneous fat may also be a function of 

age, equations for prediction of fat from skinfold measure­

ments may be needed for different age groups of each sex. 

Absolute values for skinfold thicknesses will vary with 

the type of caliper which is used and the amount and length 

of time that pressure is applied. Keys and Brozek (10) 

reported that Sandler (142) found a large change in apparent 

skinfold thickness with an increase in the caliper pressure 

from 2 to 10 gm per square mm and that the length of time 

the pressure was held also affected the skinfold reading. 

Brozek et a^L. (143) reported a systematic investigation on 

a variety of calipers, using different pressures, and found 

a marked, non-linear decrement in apparent skinfold thickness 

as the pressure was increased to about 5 gm per square mm; 

with pressures exceeding 10 gm per square mm, increments 

in pressure resulted in increments in skinfold thickness. 

At low pressures the variability of the duplicate measure­

ments was greater than at higher pressures. The length of 
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time the pressure was applied and the time between repeated 

measurements also affected the reproducibility of the 

measurement. Garn and Gorman (144) reported a reduction 

in skinfold measurements due to tissue compression of the 

caliper and calculated the value of the skinfold to be 10% 

of the calculated true values obtained from roentgenogramic 

techniques. Edwards et a_l. (145) also gave a detailed report 

on differences obtained from different calipers and using 

different pressures ; he recommended a pressure of 9 to 19 gm 

per square mm for best accuracy and reproducibility. 

In order to study the relative distribution of sub­

cutaneous and internal fat throughout the body, roentgeno­

grams have been helpful. In animals, X-ray data and fat 

extraction have shown that a large increase in fat in the 

subcutaneous areas occurs with a large increase in body fat. 

Mickelsen et al. (146) used X-ray data to compare rats which 

became obese on a high-fat diet and found a large increase in 

the amount of fat in the subcutaneous area as well as in the 

abdominal cavity. Pitts (147) reported data for 26 adult 

males and 21 adult female guinea pigs in which he extracted 

fat from the carcasses which had been separated into 11 

sections and found that the subcutaneous fat was directly 

proportional to their total body fat. Garn (148), using 

X-ray data, found little difference in the absolute fat in 

81 men and 107 women, but when calculated on a weight basis 
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the per cent fat was 23.1% for females and 16.8% for males. 

Several equations have been developed for predicting 

body fat or body density from skinfold thicknesses deter­

mined on various sites of the body. Measurements of body 

fat by densitometry or by determination of total body water 

have been used to relate skinfold thickness to total body 

fat. 

Brozek and Keys (7) have reported prediction equations 

calculated from data obtained for 116 young and 214 older 

men with mean ages of 21.9 years and 49.2 years, respectively. 

The equations were based on specific gravity measurements and 

thicknesses of 5 different skinfolds plus relative body 

weights. Pascale et al. (8) reported data obtained for skin­

folds and body specific gravity of 88 soldiers from 17 to 25 

years of age and found a high correlation between these 2 

measurements. From these data a prediction equation for 

estimating body fat from skinfold thicknesses was developed. 

Allen et a_l. (141) reported a prediction equation for esti­

mating adiposity from total body weight and the sum of the 

thickness of subcutaneous folds at 10 sites, and another 

equation which included the above measurements plus surface 

area. No differentiation was made for sex. Brozek and Mori 

(149) presented equations for predicting body density from 

roentgenograms and skinfolds, for predicting skinfolds from 

roentgenograms, and for predicting roentgenograms from 
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skinfolds. The coefficient of correlation for predicting 

density from skinfold was -.68. 

Many values are available for body density and skinfold 

measurements of men, but few data have been reported for 

women. Chen (150) studied the specific gravity of 65 healthy 

Minnesota women; Skerlj et al. (151) reported data for skin­

folds for 84 women from 18 to 67 years of age. Allen et al. 

(152) reported density values for 26 young Chinese University 

women with a mean age of 22.6 years and ranging from 19 to 29 

years except for 1 subject who was 39 years old; an equation 

based on data for body density of 29 Chinese women was pre­

sented for predicting adiposity from height and weight. 

Young et al. (153) reported specific gravity and skinfold 

data for 94 women. Edwards (138) and Garn (148) also have 

reported skinfold measurements for women. 

Before the present study was begun no equations had 

been developed for the estimation of fat from skinfolds; 

since completion of this study, Young et al. (9) have pre­

sented an equation for the estimation of density from 1 

skinfold plus percentage "standard" weight for young women. 

Young's data were obtained using 94 women from 17 to 30 

years old with a mean age of 20.36 years. 

Investigations reported to date indicate that skinfold 

measurements may serve as a useful tool in studies of nutri­

tional status. Brozek and Mori (149) have warned that care 
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must be taken not to apply predicting equations from skinfold 

measurements to individuals differing in sex or age from the 

sample used in obtaining these equations. Variations in 

technique among investigators conceivably may limit the com­

parisons which may be made among groups studied by different 

workers. Uniformity in the type and use of calipers and 

clearly defined sites of measurements may, however, reduce 

such variations among laboratories. According to the 

Committee on Nutritional Anthropometry of the Food and 

Nutrition Board of the National Research Council the body 

sites which should be included in studies of skinfold 

thickness include the upper arm skinfold and the subscapular 

skinfold (154). 
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METHOD OF PROCEDURE 

Experimental Plan 

Forty-eight apparently healthy women from 25 to 55 years 

of age were studied. The following tests were made on 25 

women: total body water, extracellular water, density, and 

anthropometric measurements including skinfold thickness. 

Density and anthropometric measurements were made on 23 

additional women. All tests were made on a subject on the 

same day with the exception that a few of the subjects had 

to have the density measurements repeated because of dif­

ficulty in the operation of the body-volume determinator on 

the test day. Measurements of total and extracellular body 

water were repeated on 3 subjects. 

The following schedule was used for the women who had 

all tests. The subjects were instructed to spend a quiet 

relaxing evening with no strenuous exercise, to get 8 hours 

rest, and to have nothing to eat or drink except water after 

7:00 p.m. on the night preceding the test. Water could be 

consumed until 10:00 p.m. The subject was called for at 

7:00 a.m., transported to the metabolism room in the Home 

Economics Building, weighed after emptying her bladder, taken 

to the University Hospital and given 50 ml water to drink. 

The subject rested in bed except for a brief period when the 
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skinfold measurements were taken. At 8:00 a.m. a physician 

took the first blood sample of approximately 15 ml from the 

antecubital vein with minimum stasis and administered intra­

venously a measured quantity of antipyrine and sodium 

thiocyanate over a two-minute period; the exact time was 

recorded. After the injection the subject was given 100 ml 

orange juice and a sweet roll. One hour later, skinfold 

measurements were made. Approximately 2 hours after the 

injection, another 15 ml blood sample was taken from the 

opposite arm, the exact time recorded, and 100 ml of water 

was given orally. After the second blood sample was obtained 

the subject returned to the metabolism room in the Home 

Economics Building for the remainder of the tests. At ap­

proximately 3 hours after injection, a third blood sample of 

10 ml was taken, the exact time recorded, and the subject was 

given 100 ml water and a sweet roll. 

The body volume determinations were then made. Four 

hours after injection, another 100 ml of water was given. 

Approximately 5 hours after injection, a fourth blood 

sample of 10 ml was taken and the exact time recorded. 

The subjects who did not have the total and extracel­

lular body water tests made had the body volume determination 

and anthropometric measurements, including skinfold measure­

ments, made at the same appointment. These subjects were not 

in the post-absorptive state but were requested to empty 
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their bladder before their weight was obtained. 

Subjects 

Forty-eight apparently healthy women ranging in age 

from 25 to 55 years were used as subjects. The subjects 

were not randomly selected but were members of the University 

faculty, graduate students, and other women in the community 

of Ames, Iowa, who volunteered to participate in the study. 

Subjects were screened for allergies and individuals who had 

a history of allergies were not used for the total body water 

and extracellular water determinations. Density, total body 

water, extracellular water and anthropometric measurements 

were made on 25 subjects (no's. 1-25). Density and 

anthropometric measurements were made on 23 additional 

subjects (no's. 26-48). 

Anthropometric Techniques 

Nude weight was determined using a Howe scale and weight 

recorded to .001 kg. Height was obtained on a platform with 

a rigid vertical upright to which a measuring stick cali­

brated in tenths of cm was attached. The subject stood 

erect, barefooted, with heels, buttocks and shoulders touch­

ing the upright and with the head held comfortably erect so 
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that the line of sight was horizontal. The height was deter­

mined by lowering a rectangular wooden object, remaining in 

contact with the vertical measuring scale until it made firm 

contact with the subject's head. 

A caliper was used for the biacromial and biiliac 

diameters. These sites were measured with the subject in 

standing position, feet together, shoulders straight but 

relaxed, and arms hanging freely at the sides. The width 

of the pelvic girdle was obtained as the greatest distance 

between the lateral margins of the iliac crest. Pressure 

was exerted on the contact surface of the anthropometer in 

order to minimize the amount of soft tissue. The width of 

the shoulder girdle was determined as the distance between 

the most lateral margins of the acromion process of the 

scapula. 

A flexible steel tape, calibrated in mm was used for 

obtaining the circumference of the calf and upper arm. The 

calf measurement was made with the subject sitting, feet flat 

on the floor, and legs perpendicular to the floor. The 

circumference was obtained on the largest portion of the 

calf. The upper arm circumference was measured with the arm 

hanging freely at the side, at a right angle to the long axis 

of the arm, and at the same level as the arm skinfold mea­

surement, namely, at the level midway between the tip of the 

acromial process of the scapula and the tip of the elbow. 
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The tape for both measurements was applied lightly to the 

skin, without deforming the contour of the skin. 

Skinfold measurements were made with a skinfold caliper 

obtained from the Laboratory of Physiological Hygiene, 

University of Minnesota. The caliper was calibrated to 

exert a pressure of 10 gm per square mm of jaw surface. The 

area of the jaw surface was 20 square mm. At all sites the 

skin was lifted by firmly grasping the fold between the thumb 

and the forefinger of the left hand, about 1 cm from the site 

at which the skinfold was to be measured. The thickness of 

the skinfold included double thickness of the skin plus tela 

subcutanea. The caliper was applied with the right hand and 

the pressure exceeded at first and then returned to the 

standard mark. 

Instructions for measurements suggested by the Committee 

on Nutritional Anthropometry of the Food and Nutrition Board, 

National Research Council (154), were used. Measurements 

were made at each site and then repeated. Six sites, pri­

marily on the right side of the body, were used. They in­

cluded the chin, the subscapula, the knee, the waist, the 

upper arm, and the lateral aspect of the thorax. These 

sites were measured in the following manner: 

Chin: With the head held comfortably erect so that the 

line of sight was horizontal, the skin under the 

mandible was picked up so that the fold was at a 
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45° angle with the median plane of the body. 

Subscapular The skinfold below the tip of the scapula 

was lifted so that it ran from the spine diagonally 

down to a point below the scapula, at an angle of 

about 45° with the spine. 

Knee: The skinfold over the patella was lifted so that 

it was parallel to the sagital plane. The subject 

was in a sitting position with leg extended forward 

and straight, but relaxed. 

Upper arm: The back of the upper arm over the triceps 

was measured at the midpoint between the top of 

acrominal process of the scapula and the tip of 

the elbow. The point was located with the arm 

flexed at 90° and held forward. The skinfold was 

obtained with the arm hanging freely at the side. 

The skinfold was lifted parallel to the long axis 

of the arm to obtain the measurement. 

Waist: The side was located along the mid-axillary line 

halfway between the lower ribs and the iliac crest; 

the skinfold was lifted parallel with the mid-

axillary line of the body. 

Thorax: The site was located at the lateral aspect of 

the thorax just beneath the rib midway between the 

axillary plane and the median plane. The fold was 

lifted at an angle about 45° to the median plane. 
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Density Measurement. 

Body volume was determined by the helium dilution method 

using a Body Volume Determinator as described by Siri (118). 

The instrument used was designed by Dr. William E. Siri, 

University of California, Berkeley, and constructed by the 

National Instrument Company, Washington, 0. C. This apparatus 

utilizes the gas-dilution technique, namely, the dilution of 5u 

a measured quantity of helium by a quantity of air that cx-

depends upon the volume displaced by the subject. 

The procedure is fairly rapid requiring about 15 minutes 

per run for each subject and does not require trained sub­

jects. Three determinations were made on each subject and 

2 determinations were made on carboys of known volume which 

bracketted the volume of each subject. 

The observations which were made for each run included : 

the temperature of the chamber air and the helium before 

injection of helium; the relative humidity in the chamber, 

before and after injection of helium; the resistance of the 

thermal-conductivity cell, before and after injection; and 

the temperature of the chamber after injection of helium. 

The equation used to determine the volume of the subject 

was: 

AB (Rx - R2) - CD (Rx - R1) 

X dx [D (Rx - R1) - B (Rx - R2)]' 
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where: A = (Vc - V^)d^ - V^d^; B = {VQ - V2)d2 + v; C = 

(Vc - V2)(d2) - Vcdx; and D = (Vc - V^)d^ + v. In the above 

figures the subscripts 1 and 2 pertain to data obtained on 2 

sets of carboys of known volume, and the subscript x refers 

to the subject's data ; V = volume ; Vc = chamber volume ; R = 

thermal-conductivity response in millivolts ; v = helium gas 

volume; and d = temperature and water vapor corrections. The 

forms used to record and calculate the volume of each subject 

are given in the Appendix, Forms 1 and 2. 

A short house coat was provided for the subject to wear 

during the determination. The coat was also used in the runs 

with the carboys of known volumes. The volumes of the glass 

carboys used for bracketting the volume of each subject were 

determined by underwater weighing. 

The average of the mean deviations of the body volume 

determinations for the 48 subjects was .166 liters. 

Equations 1 and 2, presented by Siri (123) and Rathbun 

and Pace (6), respectively, were used to estimate body fat 

from density. 

% body fat = den°£°y - 450.0 (Eq. 1) 

% body fat = - 504.4 (Eq. 2) 
s p • y r • 
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Body Water Measurement 

Total body water was determined by the antipyrine tech­

nique of Soberman (22) and extracellular water by sodium 

thiocyanate technique of Bass et aJ.. (98). Known quantities 

of antipyrine and sodium thiocyanate were administered 

intravenously and simultaneously. All subjects were in the 

fasting state initially; at specified intervals of time, 

water, orange juice, and a sweet roll were given as stated 

above. Osserman et al. (15) reported that there was no 

apparent significant difference between results of subjects 

tested in the fasting state and those who were allowed their 

usual food and fluid intake. The subject remained in bed 

except during the skinfold measurements, "which were made 1 

hour after injection. 

A blood sample was taken before the injection and again 

at 2, 3, and 5 hours after injection for the antipyrine 

determinations. Sodium thiocyanate determinations were 

made on the control blood sample and the 2-hour sample. 

Immediately after withdrawal, the blood sample was 

transferred to a container having a dried film of sodium 

heparinate sufficient to provide approximately 150 units 

per ml of blood, mixed, and centrifuged. 

The plasma concentrations of antipyrine were determined 

according to the procedure of Brodie et al_. (21); the optical 
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densities of the solutions were measured in a Beckman D. U. 

Spectrophotometer at a wave-length of 350 mji. The plasma 

concentration of antipyrine was determined by use of a 

standard curve obtained from serial dilutions of a known 

quantity of antipyrine. To obtain the plasma concentration 

at zero time, the data were plotted on a semi-logarithmic 

paper with the concentration of antipyrine in the plasma on 

the logarithmic scale against time on the non-logarithmic 

scale and extrapolated to zero time. This value was then 

corrected for plasma solids to obtain the plasma water level. 

The following equations were used to calculate the concentra­

tion of antipyrine in the plasma water, the antipyrine space, 

and the per cent body water. 

Concentration of antipyrine in plasma water (mg/ml) = 

plasma concentration (mg/ml) 4-

100 - plasma protein (qm/100 ml). 
100 • ' 

Antipyrine space (liters) = 

mg antipyrine injected 1000* 
conc. antipyrine in plasma water (mg/ml) ' ' 

% body water = antipyrine space (liters) x ̂  
body weight (kgs) 

Plasma concentration of sodium thiocyanate was determined 

according to the procedure of Bowler (155) and the optical 
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densities of the solutions read in a Beckman D. U. 

Spectrophotometer at a wave-length of 480 mji. The plasma 

concentration of sodium thiocyanate was determined by the 

use of a standard curve obtained from serial dilutions of 

a known quantity of sodium thiocyanate. The values were 

corrected for plasma solids to obtain the plasma water 

level. The following equations were used to calculate the 

concentration of sodium thiocyanate in plasma water, the 

thiocyanate space, and the per cent extracellular water: 

Concentration of NaSCN in plasma water (mg/ml) = 

plasma concentration (mg/ml) f 

100 - plasma protein (qm/100 ml). 
100 ' 

Thiocyanate space (liters) = 

mq NaSCN injected ^ i000* 
conc. NaSCN in plasma water (mg/ml) ' ' 

% body extracellular water = 

thiocyanate space (liters) lnn 

body weight (kg) 

Plasma proteins were determined according to the pro­

cedure as outlined in Practical Physiological Chemistry (156, 

pp. 553-556) by the use of standard copper sulfate solutions 

of known and varying specific gravity. 
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Individual sterile ampoules containing 50 mg antipyrine 

per ml and 17.5 mg sodium thiocyanate per ml were obtained 

from Atlas Pharmaceutical Laboratories, Inc., Detroit, 

Michigan. Each ampoule contained 25 ml of solution; approx­

imately 20 ml of solution was injected. Syringes were 

calibrated to obtain the exact amount of solution delivered 

at 25°C. 

Before determinations were made on the subjects, several 

tests were made on a random sample of the ampoules. The 

concentration of antipyrine and sodium thiocyanate in the 

ampoules was determined by standard analytical procedures 

using N. F. crystals of antipyrine and sodium thiocyanate as 

standards. The solution in the ampoules was tested for 

pyrogens according to the procedure as outlined in The 

National Formulary (157, pp. 707-708) and The Pharmacopeia 

of the United States of America (158, pp. 883-885). Atlas 

Pharmaceutical Laboratories, Inc., ran the standard Food 

and Drug Administration sterility test. 

Injection of the test solution was administered by Iowa 

State University Hospital physicians; the physicians also 

took the first 2 blood samples. The last 2 blood samples 

were taken by a medical technician approved by the University 

Health Service. 

Two equations, presented by Siri (123), were used to 

estimate per cent body fat from body water. They were as 
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follows : 

% body fat = 100 - 139 {% water) (Eq. 3) 

% body fat = 109 - 151 {% water) (Eq. 4) 

An equation, containing per cent total body water and per cent 

thiocyanate space, suggested by Keys and Brozek (10), was also 

used to estimate per cent body fat. It was as follows: 

% body fat = 100 - 156.3 {% water) + 

34.9 {% thiocyanate space) (Eq. 5) 

Equation 6, presented by Siri (123), was also used to esti­

mate per cent body fat; the equation contained both density 

and total body water. 

911 A 
% body fat = ^sity - 78 {%> water) - 135.4 

(Eq. 6) 

Statistical Analysis 

Means, standard deviations, correlation coefficients, 

multiple and simple linear regression equations, and other 

statistical measures were obtained through the use of the 

IBM 1620 electronic computer. 

A stepwise multiple regression program was used to ob­

tain the best fitting regression equations for predicting 

density from among 8 selected variables. A minimum F-value 

of 1.000 for the additional sum of squares accounted for by 
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the inclusion of a variable in the equation was used as a 

criterion for selection. Intermediate and final equations 

were determined through the aid of this test. The general 

procedure was as follows : 

2 
1. The highest simple correlation coefficient squared (r ) 

among the 8 variables (Xp X2> ... Xg) is determined. 

2. (a) If the sum of squares accounted for by this vari­

able in the test of significance for regression 

yields F < 1.000, the computer records the final 

results and halts. 

(b) If F > 1.000, the computer proceeds to the next step. 

3. The highest multiple correlation coefficient (R ) among 

the other X's with the first X already in the equation is 

determined. 

4. (a) If the additional sum of squares accounted for by 

the new variable yields F < 1.000, the computer 

records the final results and halts. 

(b) If F > 1.000, the computer records the results of 

the intermediate multiple regression equation and 

proceeds to the next step. 

5. A test is made on the sum of squares accounted for by the 

old variable with the new variable already in the equa­

tion. 

(a) If F < 1.000 for the old variable, this measure is 

eliminated from the equation, intermediate output is 
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recorded, and the computer proceeds to the next 

step. 

(b) If F > 1.000, the computer proceeds to the next 

step. 

6. The computer searches out the most potent third variable 

with the first 2 variables already in the equation (4b, 

5b) or with 1 variable in the equation where 1 variable 

was deleted in an intermediate step (5a). 

7. (a) If F < 1.000 for the new variable, the computer 

records the final results and halts. 

(b) If F > 1.000 for the new variable, the result is 

recorded and the computer proceeds to the next step. 

8. (a) If F < 1.000 for either of the old variables, that 

measure is eliminated from the equation, inter­

mediate output is recorded, and the computer 

proceeds to the next step. 

(b) If F > 1.000 for either of the old variables, the 

computer proceeds to the next step. 

9. The computer next proceeds to examine all other variables 

in a like manner until it reaches a final result and 

halts, or has examined and incorporated all possible 

variables in the equation, records the final results, and 

halts. 
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RESULTS AND DISCUSSION 

The following sections present the height, weight, 

density, body water, and anthropometric measurements of the 

subjects. These data have been used for the prediction of 

body fat of women by various equations reported in the liter­

ature. Variations in body fat among individuals and the 

changes in fat content with age will be discussed. 

Height - Weight 

The age, height, and body weight of the 48 subjects are 

given in Table 4. Ages of the subjects ranged from 25 to 55 

years. The mean height was 165.2 cm with a range of 154.8 

to 180.9 cm. Nude body weights ranged from 48.020 to 93.822 

kg with a mean of 61.237 kg. 

Height and weight relationships have been used as one 

criterion of nutriture. Over the years, various tables on 

height and weight of humans have been published (159-161). 

Various sources and methods of selection of data have been 

used in the compilation of height-weight tables and data 

have been used for different conditions of dress. Although 

these tables have been used for standards of body weight 

in relation to height and age, considerable latitude is 

necessary in the application of the tables to individuals. 
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Table 4. Physical description of 48 subjects 

Relative Relative 
Subject Height Weight Age weight3 weight*3 

no. cm kg yr % % 

1 164.1 48.371 31 78.6 85.3 
2 161.8 70.569 49 109.0 117.6 
3 163.2 56.594 31 93.2 102.1 
4 163.2 64.245 29 110.2 111.0 
5 163.4 60.100 45 94.0 109.2 

6 167.5 65.485 43 96.2 111.7 
7 165.9 60.495 29 101.5 106.5 
8 174.9 63.902 31 91.6 100.4 
9 163.8 71.718 33 117.3 118.0 
10 177.1 59.915 36 83.4 91.5 

11 174.8 56.454 29 84.4 88.7 
12 165.2 54.685 31 88.2 96.2 
13 164.1 66.593 34 106.7 117.2 
14 171.6 63.823 .51 86.2 96.4 
15 180.9 70.935 28 99.0 105.7 

16 169.0 58.872 32 92.1 99.6 
17 171.6 51.335 26 79.9 83.2 
18 167.4 57.632 41 85.2 98.5 
19 162.4 93.822 43 143.8 146.4 
20 171.2 57.060 48 82.3 95.3 

21 161.0 58.110 43 93.1 108.6 
22 164.5 51.670 41 78.7 91.1 
23 160.3 67.798 55 104.4 126.7 
24 162.2 61.690 41 95.9 111.5 
25 162.0 59.140 54 89.1 106.9 

aBased on averages reported by The Society of Actuaries 
(160). 

kfiased on averages reported by Hathaway and Foard (161). 
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Table 4. (Continued) 

Relative Relative 
Subject Height Weight Age weight3 weight*3 

no. cm kg yr % % 

26 158.5 50.790 25 93.6 104.7 
27 154.6 53.522 25 100.8 105.4 
28 168.3 55.287 25 90.6 94.5 
29 158.8 58.840 25 107.8 111.8 
30 165.0 54.743 26 92.4 96.6 

31 172.0 63.398 26 97.8 111.0 
32 160.0 68.745 26 121.4 128.5 
33 154.8 53.463 27 100.7 105.3 
34 167.3 48.020 28 79.2 88.2 
35 173.0 57.190 28 88.6 92.7 

36 157.8 66.775 32 115.3 128.0 
37 154.0 47.884 34 85.7 94.3 
38 157.4 65.282 36 112.8 125.1 
39 155.8 50.657 38 90.5 99.7 
40 164.9 59.823 41 90.7 105.5 

41 166.5 56.325 41 83.4 96.3 
42 158.9 81.886 42 129.8 141.1 
43 156.9 51.260 44 84.3 98.3 
44 172.6 65.338 44 90.9 98.6 
45 167.1 54.610 48 80.9 93.3 

46 172.7 69.808 49 96.9 113.2 
47 166.4 86.908 51 122.9 139.8 
48 171.2 67.790 52 94.1 105.2 

X 165.2 61.237 36.8 96.6 106.3 

± 6.3e ± 9.511 ± 9.2 ±14.2 ± 14.4 

r Z ( x  - x)2 
Standard deviation = x . 

N n - 1 



www.manaraa.com

69 

Some tables make no allowance for body build although this 

factor is important in determining the relative degree of 

obesity; Keys and Brozek (10) pointed out the significance 

of variations in body build, using the data of Munro (159). 

In a recent publication from the Agricultural Research 

Service, United States Department of Agriculture, Hathaway 

and Foard (161) have compiled published data on heights and 

weights of adults. 

The "desirable" body weight of each subject in this 

study was taken from the table of average weights for height 

and age report in the 1959 Build and Blood Pressure Study by 

the Society of Actuaries (160) and from the table of sug­

gested weights for heights (161). Since the data in the 

1959 Build and Blood Pressure Study were reported for persons 

wearing shoes and other clothing, a correction of the height 

of shoe heels and weight of clothing was made for the ob­

served heights and weights of the subjects. An average heel 

height of two inches was added for each height and five 

pounds were added to each body weight for clothing as was 

suggested by Hathaway and Foard (161) . The suggested weights 

for heights given by Hathaway jjnd Foard were for persons 

without shoes or other clothing; therefore, no correction 

was needed for the body weights as obtained for these 

subjects. 

The relationship of the observed body weight to the 
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"desirable" body weight was calculated for each subject for 

both standards. The relationship is given in Table 4 as the 

relative weight or per cent of the average weight. 

When the relative weights were calculated as per cent 

of the average weight from the 1959 Build and Blood Pressure 

Study, the mean relative weight was 96.6 ± 14.2% with a range 

of 78.6 to 143.8%. If the range for desirable weight for 

the height is considered to be ± 10% of the desirable weight, 

then 24 (50%) of the subjects were of average weight, 16 

(33.3%) were below average and 8 (16.7%) were above average. 

On the basis of the weights for heights suggested by 

Hathaway and Foard (161), the mean relative weight was 

106.3 ± 14.4% with a range of 83.2 to 146.4%. There were 

28 (58.3%) of the subjects within the range of 90 to 

110%, that is, of desirable body weight. Four (8.3%) of 

the subjects were underweight and 16 (33.3%) were over­

weight. 

Averages reported in the 1959 Build and Blood Pressure 

Study (160) were given for several age groups without 

reference to body build. Averages in the report by 

Hathaway and Foard (161) were selected for adults who were 

20 to 24 years of age, and it was assumed that throughout 

adulthood the body weight probably should not vary more than 

5 lb for short persons and 10 lb for tall persons. 

Comparison of the results from the 2 tables for weight 
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and height showed wide differences in the per cent of 

desirable weight for some individuals. Standard weights 

taken from the table of Hathaway and Foard (161) gave higher 

relative weights for all subjects than the standard weights 

taken from the actuarial study. However, the group of 16 

subjects judged to be overweight according to the values of 

Hathaway and Foard included the 8 subjects classed as over­

weight by values from the actuarial study. The 4 subjects 

who were grouped as underweight according to the range from 

desirable body weight based on the tables of Hathaway and 

Foard were included in the group of 16 subjects who were 

classed as underweight according to the figures of the 

actuarial study. 

Body Density 

Body densities of the 48 women subjects are given in 

Table 5. The mean body density for the group was 1.0215 ± 

.0162 gm per cubic cm. Values ranged from .9853 to 1.0494 

gm per cubic cm. The median was 1.0252 gm per cubic cm. 

The body density of each subject was converted to specific 

gravity in order to facilitate comparison of these values 

with data reported as specific gravity in the literature. 

Calculated values for specific gravity ranged from .9918 to 

1.0563 gm per cubic cm; the mean was 1.0282 ± .0163 gm per 
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cubic cm; the median was 1.0320 gm per cubic cm. 

Twenty-four subjects, 25 to 55 years of age, whose body 

weights were within ± 10% of desirable body weight (Society 

of Actuaries, 1959; 160) had a mean density of 1.0209 gm per 

cubic cm; the range was from .9978 to 1.0494 gm per cubic cm. 

Nine subjects, 25 to 29 years of age, whose body weights were 

also within ± 10% of desirable weight, had a mean density of 

1.0266 ± .0084 gm per cubic cm with a range of 1.0104 to 

1.0350 gm per cubic cm. The median for this group was 1.0290 

gm per cubic cm. 

Table 5. The body density and corresponding specific gravity 
of 48 adult women 

Subject 

no. 

Age 

yr 

Density 

gm/cm^ 

Specific gravity 

gm/cm^ 

1 
2 
3 
4 
5 

31 
49 
31 
29 
45 

1.0432 
1.0413 
1.0494 
1.0427 
1.0152 

1.0501 
1.0482 
1.0563 
1.0496 
1.0219 

6 
7 
8 
9 

10 

43 
29 
31 
33 
36 

1.0056 
1.0252 
1.0179 
1.0338 
1.0328 

1.0122 
1.0320 
1.0246 
1.0406 
1.0396 

11 
12 
13 
14 
15 

29 
31 
34 
51 
28 

1.0434 
1.0252 
.9978 
1.0065 
1.0292 

1.0503 
1.0320 
1.0044 
1.0131 
1.0360 
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Table 5. (Continued) 

Subject Age Density Specific gravity 

no. yr gm/cm3 gm/cm3 

16 32 1.0244 1.0312 
17 26 1.0334 1.0402 
18 41 1.0086 1.0153 
19 43 .9916 .9981 
20 48 1.0426 1.0495 

21 43 1.0044 1.0110 
22 41 1.0370 1.0438 
23 55 1.0047 1.0113 
24 41 1.0199 1.0266 
25 54 1.0042 1.0108 

26 25 1.0334 1.0402 
27 25 1.0350 1.0418 
28 25 1.0280 1.0348 
29 25 1.0157 1.0224 
30 26 1.0290 1.0358 

31 26 1.0104 1.0171 
32 26 1.0198 1.0265 
33 27 1.0338 1.0406 
34 28 1.0422 1.0491 
35 28 1.0338 1.0406 

36 32 .9988 1.0054 
37 34 1.0415 1.0484 
38 36 1.0080 1.0147 
39 38 1.0297 1.0365 
40 41 1.0098 1.0165 

41 41 1.0270 1.0338 
42 42 1.0085 1.0152 
43 44 1.0294 1.0362 
44 44 1.0272 1.0340 
45 48 .9907 .9972 

46 49 1.0028 1.0094 
47 51 .9853 .9918 
48 . 52 1.0124 1.0191 

X 36.8 1.0215 1.0282 

± 9.2 ± .0162 ± .0163 
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Young et a_l. (153) have reported body densities of 94 

American women; the values were somewhat higher than the 

body densities of these subjects. The mean density for the 

94 women was 1.0342 ± .0094 gm per cubic cm; the range was 

from 1.0150 to 1.0595 gm per cubic cm; the median was 1.0342 

gm per cubic cm. The ages of the women ranged from 17.2 to 

27.2 years; the mean was 20.36 years. The mean body weight 

of the group was 58.96 ± 6.445 kg. Values for 26 Chinese 

University women at the Medical College of the National 

Taiwan University reported by Allen et al. (152) averaged 

1.0397 gm per cubic cm. The Chinese women were from 19 to 39 

years of age; the mean age was 22.6 years and only one of the 

subjects was over 29 years old. The mean body weight was 

49.3 kg. The mean specific gravity of 25 Minnesota women 

studied by Chen (150) was 1.0458 ± .0099 gm per cubic cm. 

This group ranged in age from 18 to 30 years (mean, 24.4 

years) and had a mean body weight of 55.44 ± 6.42 kg. 

Only the 9 subjects of this study who were 25 to 29 

years of age and who were of average body weight were in an 

age range similar to that of the women studied by Young et al. 

(153), Allen et ôlL. (152) and Chen (150). The mean density 

for these subjects, 1.0266 and the calculated specific 

gravity, 1.0334, were somewhat lower than the reported values 

although higher than the means for the entire group of 48 

women. 
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Body Water 

Table 6 presents the antipyrine space and the sodium 

thiocyanate space for each of 25 subjects for whom deter­

minations of body water were made. The subjects ranged in 

age from 26 to 55 years. The mean body weight was 62.040 ± 

9.004 kg. These subjects were among the entire group of 48 

women; the age range and mean body weight of the sub-sample 

were similar to those of the total group. Both antipyrine 

space and sodium thiocyanate space are expressed as liters 

and as per cent of body weight in Table 6. Since antipyrine 

space as per cent of body weight is used as an index of total 

body water, these terms will be used interchangeably. 

The mean antipyrine space was 30.317 ± 3.493 liters; 

values for individual subjects ranged from 24.551 to 39.217 

liters. The mean total body water was 49.204 ± 4.343% of the 

body weight. The mean lean mass or fat-free weight calcu­

lated on the basis of antipyrine space and assuming that lean 

body mass contains 72% water, was 68.2% of the body weight. 

Values for total body water ranged from 41.8 to 56.4%. 

Data for the total body water of 94 normal healthy 

women with a mean age of 20.4 years and ranging from 17.0 

to 27.2 years of age, were reported by Young et al. (153). 

The test solute used was N-acetyl-4-amino antipyrine (NAAP). 

The NAAP space was 30.33 ± 4.363 liters, which was equivalent 
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Table 6. The antipyrine space and sodium thiocyanate space 
of 25 subjects 

Subject Weight Antipyrine space Na-thiocyanate space 

no. kg liters % body wt liters % body wt 

1 48.371 24.551 50.8 14.800 30.6 
2 70.569 38.889 55.1 18.429 26.1 
3 56.594 29.895 52.8 15.216 26.9 
4 64.245 27.518 42.8 17.533 27.3 
5 60.100 30.582 50.9 16.853 28.0 

6 65.485 28.867 44.1 15.004 22.9 
7 60.495 27.985 46.3 16.421 27.1 
8 63.902 31.435 49.2 18.327 .28.7 
9 71.718 31.463 43.9 16.017 22.3 
10 59.915 32.817 54.8 18.330 30.6 

11 56.454 31.379 55.6 16.318 28.9 
12a 54.685 29.096 53.2 15.978 29.2 
13 66.593 29.257 43.9 15.491 23.3 
14 63.823 29.139 45.7 14.743 23.1 
15 70.935 34.452 48.6 18.003 25.4 

16 58.872 29.201 49.6 15.545 26.4 
17 51.335 25.993 50.6 13.506 26.3 
18 57.632 28.625 49.7 15.064 26.1 
19 93.822 39.217 41.8 20.774 22.1 
20 57.060 32.177 56.4 18.528 32.5 

21 58.110 26.118 44.9 11.711 20.2 
22 51.670 28.423 55.0 16.049 31.1 
23 67.798 32.821 48.4 17.153 25.3 
24 61.690 30.248 49.0 16.317 26.5 
25 59.140 27.767 47.0 15.143 25.6 

X 62.040 30.317 49.2 16.290 26.5 

± 9.004 ± 3.493 ± 4.3 ± 1.870 ± 3.1 

^Urticaria occurred immediately after injection and 
epinephrine was administered. 
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to 51.66% body weight. The mean fat-free weight calculated 

on the basis of NAAP space was 71.76 ± 9.099% of the body 

weight. As stated previously, the body densities of the 

subjects studied by Young, et al. (153) were higher than the 

body densities of the subjects of this study. Thus it would 

be expected that the mean fat-free weight would be corre­

spondingly higher also. 

Using deuterium oxide as the test solute, McMurrey et al. 

(162) determined the body water of 10 normal females. Ages 

ranged from 23 to 51 years (mean 33.7 years); per cent body 

water ranged from 55.9 to 40.7% with a mean of 48.6 ± 4.7%. 

These women-corresponded in age range to the subjects re­

ported here; the mean total body water of the 2 groups was 

essentially the same. Johnston and Bernstein (163) studied 

17 healthy women, 21 to 59 years of age, with relative weight 

ranging from 60.0 to 284.0%. Measurements for total body 

water using antipyrine ranged from 31.4 to 60.8% of body 

weight. This range was considerably greater than the range 

in body water for the 48 subjects of this study. However, 

the range in relative body weight was also much greater than 

for these subjects. 

The mean sodium thiocyanate space of the subjects in 

this study was 16.290 ± 1.870 liters with a range from 13.506 

to 20.774 liters. When the values were expressed as per cent 

of body weight, the range was from 20.2 to 32.5% with a mean 
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of 26.500 ± 3.078. Since thiocyanate is reported to over­

estimate the extracellular fluid, the factor .7, which was 

recommended by Keys and Brozek (10), was used to convert the 

thiocyanate space to extracellular space; the mean extracel­

lular fluid was then 18.3% of body weight with a range from 

13.7 to 22.7% of body weight. This value is slightly lower 

than the values of 22 to 25% of body weight reported for men 

(10, 69, 76, 77, 82, 96, 164) but slightly higher than the 

mean value of 14.9% of body weight with a range from 9.8 to 

21.4% reported by Johnston and Bernstein (163) for 17 women. 

Inulin was used as the test solute by Johnston and Bernstein. 

Repeated determinations for total 

body water and extracellular water 

Repeat measurements of total body water and extracel­

lular water were made for 3 subjects to gain information 

about individual variation in total body water and the 

distribution of body water. No attempt was made to have 

the second measurement within a few days after the first 

since this would have been difficult for the subjects to 

schedule and it was considered desirable to avoid any 

residual effects of the first measurement. The time period 

between measurements was from 3 to 4 1/2 months. The data 

are presented in Table 7. 

Subject 1 had 24.715 and 24.551 liters of total body 
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Table 7. The antipyrine and sodium thiocyanate spaces of 3 subjects over a 
period of time 

Subject 
no. 

Date Weight 
kg 

Antipyrine 
Liters 

space 

% 
NaSCN : 
Liters 

space 

% 
Fata 

% 

1 4- 2-60 
7-23-60 

51.490 
48.371 

24.715 
24.551 

48.0 
50.8 

14.807 
14.800 

28.7 
30.6 

33.3 
29.4 

2 4- 7-60 
8-18-60 

70.569 
73.770 

38.889 
38.905 

55.1 
52.7 

18.429 
19.032 

26.1 
25.8 

23.4 
26.8 

5 5-20-60 
8-19-60 

59.668 
60.695 

30.729 
30.582 

51.5 
50.9 

16.657 
16.853 

27.9 
28.3 

28.4 
29.2 

-j 
vO 

aPer cent fat calculated from Equation 3. 
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water (antipyrine space) and 14.807 and 14.800 liters of 

sodium thiocyanate space on the 2 different test days ; there 

was a loss of weight of 3.119 kg between determinations. 

Subject 2 had 38.889 and 38.905 liters of total body water 

and 18.429 and 19.032 liters of thiocyanate space respec­

tively on the 2 test days. Values for subject 5 on the 2 

days were 30.729 and 30.582 liters of total body water and 

16.657 and 16.853 liters of thiocyanate space, respectively. 

There was no appreciable change in total body water between 

tests for any of the subjects; the only change in extracel­

lular space was an increase of .603 liters for subject 2 and 

an increase of .196 liters for subject 5. Keys and Brozek 

(10) have reported that subjects gaining weight from a pre­

viously normal, well-fed state showed an increase in extra­

cellular space. Subject 2 gained approximately 3 kg between 

the 2 determinations; however, subject 5 gained only 1 kg. 

Keys et al. (165) reported that there was practically no 

change in absolute thiocyanate space during an average weight 

loss of 12.6 kg for subjects on a severe calorie deficit. 

Subject 1 lost 3.119 kg and showed no significant loss of 

thiocyanate space. 

Since the lean mass of the body contains approximately 

72% water, it would be expected that values for total body 

water would be relatively constant unless a shift in the 

plane of nutrition occurred, resulting also in a change in 
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in lean body mass. The data in Table 7, although based only 

on duplicate observations on 3 individuals, support this 

hypothesis. 

Values for body density and/or body water were used for 

estimating the amount of body fat of the subjects. The 

expression "body fat" has been used to refer to total body 

fat and includes the essential body lipids unless otherwise 

indicated. 

Estimation of body fat from density 

Several equations have been reported in the literature 

for estimating body fat from density. If one considers only 

the density of the whole body (d), density of the fat-free 

body (dQ), and density of fat (d^), the following equation 

applies: 

Using the constants 1.100 and 0.900 for density of the fat-

free body and pure fat, respectively, Siri (123) obtained the 

following equation for estimating percentage of body fat from 

body density: 

Body Fat 

1 
d 
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% body fat 495.0 - 450.0 (Eq. 1) density 

Siri (123) estimated a standard deviation of ± 4.0% 

body weight in the calculation of body fat, assuming that 

body density was measured with a reliability of ± .005 

gm per cubic cm. If no allowance was made for error in 

measuring density, the uncertainty in fat estimation 

theoretically would be only ± 3.8% body weight. 

From studies on guinea pigs, Rathbun and Pace (6) 

derived an equation (Equation 2) for estimating the per cent 

fat from the specific gravity of humans. Constants used in 

this equation were 0.918 gm per cubic cm for the density of 

fat and 1.000 gm per cubic cm for the density of the fat-

free body. 

The per cent body fat of the women was estimated from 

Equations 1 and 2. Results for the individual subjects are 

presented in Table 8. The per cent fat estimated by 

Equation 1 ranged from 21.7 to 52.4% of body weight with 

a mean of 34.70 ± 7.74%. The mean per cent fat estimated 

by Equation 2 was 35.29 ± 8.63% of body weight with a range 

of 20.8 to 55.0%. Thus, there was good agreement between 

the values for body fat predicted from Equation 1 and those 

predicted from Equation 2. 

% body fat (Eq. 2) 
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Table 8. Estimated per cent fat from density and specific 
gravity equations for 48 subjects 

Subject Fat from 
no. Equation 1 Equation 2 

% % 

1 24.5 23.9 
2 25.4 24.9 
3 21.7 20.8 
4 24.7 24.2 
5 37.6 38.2 

6 42.2 43.7 
7 32.8 33.2 
8 36.3 37.1 
9 28.8 28.8 
10 29.3 29.3 

11 24.4 23.8 
12 32.8 33.2 
13 46.1 48.0 
14 41.8 43.2 
15 31.0 31.1 

16 33.2 33.6 
17 29.0 29.0 
18 40.8 42.0 
19 49.2 51.5 
20 24.8 24.2 

21 42.8 44.4 
22 27.3 27.1 
23 42.7 44.2 
24 35.3 36.0 
25 42.9 44.5 

26 29.0 29.0 
27 28.3 28.1 
28 31.5 31.7 
29 37.4 38.2 
30 31.1 31.2 
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Table 8. (Continued) 

Subject Fat from 
no. Equation 1 Equation 2 

% % 

31 39.9 41.1 
32 35.4 36.1 
33 28.8 28.8 
34 25.0 24.4 
35 28.8 28.8 

36 45.6 47.4 
37 25.3 24.8 
38 41.1 42.4 
39 30.7 30.9 
40 40.2 41.4 

41 32.0 32.3 
42 40.8 42.1 
43 30.9 31.0 
44 31.9 32.2 
45 49.6 52.0 

46 43.6 45.2 
47 52.4 55.0 
48 38.9 40.0 

X 34.70 35.29 
±7.74 ± 8.63 

The percentage fat ranged from 28.3 to 39.9% for the 9 

women who were 25 to 29 years of age and whose body weights 

were within ± 10% of desirable body weight. The mean for 

this group was 32.20 ± 3.75% and the median was 31.1%. The 

use of Equation 2 gave a mean of 32.49 ± 4.42% with a range 

of 28.1 to 41.1% fat; the median was 31.2% fat. These 
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figures are higher than the mean of 28.69 ± 4.856% (ranging 

from 15.81 to 38.62%) reported by Young et al_. (153), and 

26.11 ± 5.07% fat reported by Chen (150). From the mean 

density data reported by Allen et al. (152) and Equation 2, 

the mean percentage of body fat for the Chinese University • 

women was calculated to be 29.2%, with a range of 20.5 to 

43.6%. 

Estimation of body fat from body water 

Table 9 gives the percentage of body fat calculated from 

data for total body water by two equations, Equations 3 and 4 

(123), and by an equation which involves both total body 

water and extracellular water, Equation 5 (10). 

% body fat = 100 - 139 (% water) (Eq. 3) 

% body fat = 109 - 151 (% water) (Eq. 4) 

% body fat = 100 - 156.3 (% water) + 

34.9 (% thiocyanate space) (Eq. 5) 

The per cent.of body weight as fat estimated from Equations 

3, 4 and 5 ranged from 21.6 to 41.9%; 23.8 to 45.9%; and 

23.0 to 42.6%, respectively. The means were 31.60 ± 6.027%; 

34.70 ± 6.554%; and 32.34 ± 5.970%, respectively. 
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bj 
no 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Estimated per cent fat from 6 different equations for 25 subjects 

Eq. 1 Eq. 2 Eq. 3 Eq. 4 Eq. 5 Eq. 6 X 

24.5 23.9 29.4 32.3 31.3 28.0 28.2 + 3.47 

25.4 24.9 23.4 25.8 23.0 25.0 24.6 ± 1.12 
21.7 20.8 26.6 29.3 26.9 25.2 25.1 + 3.26 

24.7 24.2 40.5 44.4 42.6 34.3 35.1 ± 8.94 
37.6 38.2 29.2 32.1 30.2 33.5 33.5 ± 3.74 

42.2 43.7 38.7 42.4 39.0 40.8 41.1 ± 2.00 
32.8 33.2 35.6 39.1 37.0 35.1 35.5 ± 2.36 
36.3 37.1 31.6 34.7 33.1 34.3 34.5 + 2.02 

28.8 28.8 39.0 42.7 39.2 35.3 35.6 + 5.79 

29.3 29.3 23.8 26.3 25.1 27.0 26.8 ± 2.22 

24.4 23.8 22.7 25.0 23.2 24.2 23.9 ± .84 

32.8 33.2 26.1 28.7 27.0 29.7 29.6 ± 2.93 
46.1 48.0 39.0 42.7 39.5 42.7 43.0 ± 3.55 
41.8 43.2 36.5 40.0 36.7 39.4 39.6 ± 2.68 
31.0 31.1 32.4 35.6 32.9 32.5 32.6 ± 1.67 
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Table 9. (Continued) 

Subject 
no. 

Eq. 1 Eq. 2 Eq. 3 Eq. 4 Eq. 5. Eq. 6 X 

16 33.2 33.6 31.1 34.1 31.7 32.7 32.7 ± 1.15 
17 29.0 29.0 29.7 32.6 30.1 30.1 30.1 ± 1.33 
18 40.8 42.0 30.9 34.0 31.4 35.8 35.8 ± 4.69 
19 49.2 51.5 41.9 45.9 42.4 45.6 46.1 ± 3.75 
20 24.8 24.2 21.6 23.8 23.2 23.7 23.6 ± 1.10 

21 42.8 44.4 37.4 41.2 36.9 40.5,  40.5 ± 2.95 
22 27.3 27.1 23.6 26.0 24.8 25.9 25.8 + 1.40 

23 42.7 44.2 32.7 35.9 33.2 37.6 37.7 ± 4.81 
24 35.3 36.0 31.9 35.0 32.6 34.1 34.2 ± 1.61 
25 42.9 44.5 34.7 38.0 35.4 38.8 39.0 ± 3.95 

X 33.90 34.40 31.60 34.70 32.34 33.27 
-

± 7.943 ± 8.854 ± 6.027 ± 6.554 ± 5.970 ± 6.144 
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These equations differ slightly in the basic assumptions 

made in the derivations. Equation 3 is based on the assump­

tion that lean body mass has a constant proportion of 72% 

water in lean body mass. Siri (123), assuming that the 

accuracy of total body water measurement was ± 2% body 

weight, estimated the uncertainty in fat estimation to be 

not less than ± 4% body weight. Equation 4 is based on the 

assumption that lean body mass equals 72% water, 21% protein 

and 7% minerals, and that fat is added as obesity tissue 

which contains 62% pure fat, 31% water, and 7% protein. 

The total body water is then the sum of the water asso­

ciated with lean body mass and with fat. Basic to Equation 

5 is the assumption that a normally hydrated body has 16% 

extracellular water, and that the extracellular space is 

estimated from thiocyanate space with thiocyanate space 

equal to the extracellular fluid divided by .7. Keys and 

Brozek (10) considered that the inulin space was more nearly 

correct for true extracellular space than thiocyanate space. 

From comparisons of measurements made with thiocyanate and 

with inulin, they found that the inulin space was very close 

to 70% of the thiocyanate space ; therefore, the extracel­

lular fluid space could be taken as .7 times the thiocyanate 

space for better estimation. In this equation Keys and 

Brozek used a value of 70% for water in lean body mass. If 

the subjects are normally hydrated (i.e., extracellular 
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Table 10. Correlation coefficients between mean values of 
body fat estimated from 6 different equations3 

Equation 2 3 4 5 6 

1 .9999 .6322 .6323 .6012* .9033 

2 .6348 .6350 .6038* .9048 

3 .9990 .9943 .9033 

4 .9941 .9034 

5 . .8828 

The probability (P) by the use of z transformations was 
< .001 for all the correlation coefficients except the ones 
marked with an asterisk for which P was < .005. 

fluid equals 16% total body weight) Equations 4 and 5 should 

give similar results except for the fact that values of 70% 

and 72% for water in the lean body mass were used for Equa­

tions 5 and 4, respectively. In all subjects, Equation 5 

gave slightly lower values for per cent fat than Equation 4; 

however, the results showed close agreement. The correlation 

coefficient between Equations 3 and 4 was .9990; between 

Equations 3 and 5, .9943; and between Equations 4 and 5, 

.9941; all 3 comparisons had a probability of < .001. The 

correlation coefficients for values estimated by the equa­

tions are presented in Table 10. 

Johnston and Bernstein (163) used antipyrine to estimate 

the per cent fat in 17 healthy women from 21 to 59 years of 

age. The percent fat ranged from 16.9 to 57.2% of body 
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weight. The relative weight of their subjects ranged from 

60 to 284%, McMurrey et al. (162) calculated body fat from 

total body water data, obtained from deuterium oxide, in 10 

females from 23 to 51 years of age (mean age 33.7 years). 

The per cent fat ranged from 23.6 to 44.4% of body weight. 

Estimation of body fat from density and of total body water 

The measurement of both density and total body water 

gives a method for estimating body composition which does not 

require explicit description of the composition of adipose 

tissue and allows for an estimate of fat to be made from 

density in which the double component system comprises fat 

and the lean body mass minus the separately analyzed body 

water (10, 12). The data obtained by use of a combined 

equation (Equation 6) were given also in Table 9. The 

equation was: 

% body fat = density ~ 78 water) - 135.4 

(Eq. 6) 

The per cent fat estimated by this equation ranged from 23.7 

to 45.6% of body weight with a mean of 33.27 ± 6.144%. 

The above equation was derived by Siri (123) by combin­

ing the density equation (Equation 1) and the total body 

water equation (Equation 3). He also assumed that the 

density of the fat-free body was equal to 1.100 gm per cubic 
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cm, the density of fat was equal to .900 gm per cubic cm, and 

added the density of the protein-mineral solids equal to 

1.565 gm per cubic cm. The reliability of this equation was 

estimated by Siri to be ± 2% of body weight. 

Comparison of results of various 

methods for estimating body fat 

The mean and standard deviation of 6 values estimated 

for the body fat of each subject were included in Table 9. 

Coefficients of correlation between estimates of body fat 

were given for Equations 1-6 in Table 10. Estimations of fat 

by the different equations for individual subjects agreed 

within ± 4.00% (standard deviation) for all subjects except 

numbers 4, 9, 18, and 23 who had standard deviations for 

estimation of fat of 8.93, 5.79, 4.69, and 4.81%, respectively. 

The equations using density or specific gravity alone (Equa­

tion 1 or 2) agreed very closely as one might expect (correla­

tion coefficient, .9999). Equation 5, which included total 

body water and extracellular water, showed little difference 

in the estimation of fat from either Equation 3 or Equation 4 

which were calculated from total body water alone (correlation 

coefficients of .9943 and .9941, respectively). 

The estimation of fat by Equation 6, which included 

density and total body water, gave the best agreement for 

nearly all subjects with the mean estimate. The values 
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agreed within ± .7% for all subjects. As mentioned pre­

viously, Siri (123) calculated that the best estimate (± 2% 

body weight) for body fat would be obtained by prediction 

from both density and total body water. Allen et a_l. (166) 

reported data for the total body water, density, and bone 

minerals for 30 healthy subjects, male and female. These 

investigators considered that it was desirable to measure 

bone minerals using roentgenograms for the best prediction 

of body fat. They compared their data with those of Siri 

(12) and found remarkably good agreement for healthy persons 

of either sex with quantities of fat ranging from 8 to 48 

kilograms. Data reported by Siri were calculated according 

to Equation 6 (Siri, 123). 

It is evident that the best prediction of body fat would 

be obtained from data for both total body water and density, 

(Equation 6). However, since it may be desirable to make 

only one measurement, comparisons of Equation 6 with equa­

tions utilizing density only (Equations 1 and 2) and total 

body water only (Equations 3 and 4) were made. All 4 of the 

correlation coefficients were highly significant; values 

ranged from .9033 to .9048. Values for body fat predicted 

from body density correlated positively with those predicted 

from body water; however, the correlation coefficients were 

lower for comparisons between values obtained from body 

density and from body water than comparisons between values 
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obtained from equations involving body density only or 

between values obtained from equations involving body water 

only. 

Anthropometric Measurements 

Measurements were made of the skinfold thickness, the 

circumference of the arm and calf, and the biacromial and 

biiliac diameter. Data for individual subjects are presented 

in Table 11. The groups of 48 subjects were subdivided into 

3 age groups : age 25 to 29 years, age 31 to 39 years, and 

age 41 to 55 years. Statistical measures for the 3 groups 

are given in Table 12. Since there were only 2 subjects 

above 49 years of age, the oldest group is listed as 41 to 

55 years of age in order to include these 2 subjects. 

Skinfold measurements were made at 6 body sites. The 

skinfold of the thorax and arm had the highest mean values, 

16.97 ± 7.74 mm and 16.82 ± 6.06 mm, respectively. Other 

sites measured included the subscapula (14.68 ± 7.65 mm), the 

knee (12.83 ± 5.78 mm), the waist (11.61 ± 7.91 mm), and the 

chin 5.64 ± 1.82 mm). 

The mean of the arithmetic total of the 6 skinfold mea­

surements increased with an increase in mean age, yet the 

mean relative weight was approximately the same for all age 

groups. The mean increment with age decade was essentially 
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Table 11. Anthropometric measurements including skeletal, circumference, and 
skinfold thickness of 48 subjects 

Subject Biacromial Biiliac Circumference. Skinfold 
width width Arm Calf Chin Arm Knee Sub- Thorax Waist 

scapula 
no. cm , cm cm cm mm mm mm mm mm mm 

1 35.3 26.3 23.9 33.5 7.0 8.75 7.25 8.25 9.0 7.25 
2 38.5 32.6 31.5 39.7 7.75 20.5 13.75 14.25 19.75 7.75 
3 36.9 27.3 26.0 37.5 5.5 14.25 18.25 9.0 9.25 5.25 
4 38.4 31.7 29.0 39.5 7.75 24.0 13.5 18.5 19.25 12.0 
5 37.0 29.6 28.0 34.8 5.0 15.75 9.75 13.5 12.75 9.5 

6 36.4 30.9 28.5 36.2 5.0 18.75 16.75 14.25 15.5 13.0 
7 37.9 29.6 27.9 37.2 4.5 20.5 13.25 12.25 19.75 13.0 
8 37.7 28.8 26.5 36.1 4.75 9.5 8.5 10.5 14.5 11.5 
9 39.9 30.5 30.4 41.6 8.0 25.5 10.75 11.25 18.0 13.75 
10 39.8 29.8 24.5 35.6 3.0 11.75 6.0 10.75 16.25 10.0 

11 38.8 30.8 23.9 34.4 4.0 8.0 9.0 8.25 8.75 5.0 
12 36.9 30.4 24.4 33.3 5.0 12.75 5.25 10.75 7.25 5.75 
13 35.7 32.6 30.2 38.1 7.5 25.5 26.75 19.75 29.5 20.5 
14 40.5 31.2 29.5 33.8 6.0 18.75 6.75 18.75 20.25 11.0 
15 39.7 30.8 29.2 36.3 6.25 17.75 12.75 14.25 17.75 10.0 

16 36.8 30.8 26.2 37.0 4.75 14.75 9.5 11.75 9.75 7.25 
17 38.3 28.9 23.2 32.5 3.25 13.0 14.0 13.25 11.75 9.25 
18 34.1 28.8 27.3 36.0 5.75 14.0 11.0 12.75 14.0 8.0 
19 39.4 36.1 35.2 44.6 11.75 30.0 34.5 36.75 40.5 38.0 
20 37.4 31.3 25.2 35.8 3.5 9.5 9.75 9.5 9.0 4.0 

21 36.3 30.8 26.6 36.5 6.0 18.75 15.75 15.25 14.25 14.25 
22 34.5 28.8 25.0 36.2 4.0 9.75 7.0 7.0 10.25 6.25 
23 36.2 32.2 32.5 34.5 6.0 21.0 8.5 16.0 17.75 14.0 
24 36.0 32.5 27.3 35.5 6.0 18.0 14.75 15.25 19.5 12.25 
25 37.5 29.1 29.8 36.8 6.25 20.0 13.0 11.0 22.0 7.25 
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Table 11. (Continued) 

Subject Biacromial Biiliac Circumference Skinfold 
width width Arm Calf Chin Arm Knee Sub- Thorax Waist 

scapula 
no. cm cm cm cm mm mm mm mm mm mm 

26 32.0 27.1 23.5 34.3 3.0 9.5 8.0 12.0 12.25 9.0 
27 36.1 26.6 26.6 34.5 3.75 13.5 14.75 12.0 16.75 8.25 
28 35.0 28.5 25.6 37.5 5.0 12.75 9.0 9.0 13.25 8.25 
29 35.8 29.4 26.5 35.1 5.25 14.25 12.0 16.5 21.75 13.75 
30 38.7 27.7 24.0 34.2 5.0 8.5 11.75 9.75 10.75 7.75 

31 33.3 29.1 28.8 38.1 5.75 21.0 11.75 24.0 24.75 11.0 
32 34.3 30.6 29.0 45.0 6.0 20.0 17.0 15.5 21.5 7.5 
33 35.2 25.9 26.2 35.3 3.75 14.75 16.75 13.5 12.0 6.25 
34 33.2 25.9 22.0 34.0 3.50 7.50 8.0 7.75 9.25 6.0 
35 36.0 30.7 23.5 34.3 4.75 8.25 9.25 8.75 9.25 7.75 

36 36.7 30.4 32.2 38.0 6.0 26.0 15.5 25.5 28.5 18.0 
37 34.0 26.1 25.1 34.9 3.0 12.0 10.25 10.5 10.5 8.25 
38 36.3 30.5 31.2 41.9 8.0 21.0 28.25 18.25 17.5 10.25 
39 33.8 27.8 26.5 34.7 6.25 22.0 9.0 12.0 . 22.0 8.25 
40 36.2 29.6 26.9 37.5 5.25 14.75 11.5 15.25 14.0 9.0 

41 35.4 29.4 26.4 36.2 5.0 15.75 7.0 8.0 12.75 7.0 
42 39.4 32.6 37.4 41.6 6.75 29.75 19.0 36.75 30.0 27.25 
43 36.8 27.5 26.6 37.5 4.25 15.5 9.0 8.0 12.0 5.0 
44 38.8 31.7 26.5 37.5 6.5 14.25 16.25 15.0 10.25 11.75 
45 36.7 29.2 26.2 33.2 6.0 17.75 7.75 14.0 23.25 17.25 

46 36.0 30.6 29.1 37.2 6.0 19.25 13.0 13.5 21.5 17.25 
47 37.8 33.4 36.2 39.2 11.25 31.5 18.5 45.0 42.5 47.0 
48 39.5 32.2 28.5 40.0 6.25 17.25 16.75 11.25 12.0 10.0 

X 36.7 29.9 27.6 36.8 5.64 16.82 12.83 14.68 16.97 11.61 

± 2.0 ± 2.1 ± 3.3 ± 2.8 ±1.82 ±6.06 ± 5.78 ± 7.65 ±7.74 ± 7.91 
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Table 12. Mean and range of skinfold measurements and 
density of 48 women in 3 age groups 

Measurement Mean Range 

Age 25 -  29 years; n = 15 

Chin (mm) 4.77 ± 1.30 3.00 - 7.75 
Arm (mm) 14.22 ± 5.38 7.50 - 24.00 
Knee (mm) 12.05 ± 2.94 8.00 - 17.00 
Subscapula (mm) 13.02 ± 4.38 7.75 - 24.00 
Thorax (mm) 15.25 + 5.26 8.75 -  24.75 
Waist (mm) 8.98 ± 2.56 5.00 -  13.75 
Total skinfold ( mm) 68.28 ± 18.62 42.00 -  98.25 
Relative weight ( % )  96.5 ± 11.5 79.9 -121.4 

Density (gm/cm^) 1.0303± .0096 1.0104 - 1.0434 

Age 31 - 39 years; n = 12 

Chin (mm) 5.73 ± 1.73 3.00 - 8.00 
Arm (mm) 16.98 ± 6.56 8.75 - 26.00 
Knee (mm) 12.94 ± 7.74 5.25 - 28.25 
Subscapula (mm) 13.19 ± 5.19 8.25 -  25.50 
Thorax (mm) 16.00 ± 7.53 7.25 - 29.50 
Waist (mm) 10.50 ± 4.76 5.25 -  20.50 
Total skinfold ( mm) 75.33 ± 28.47 46.75 -129.50 
Relative weight ( % )  96.3 ± 13.2 78.6 -117.3 

Density (gm/cm^) 1.0252± .0169 .9978 - 1.0494 

Age 41 - 55 years; n = 21 

Chin (mm) 6.20 ± 2.01 3.50 - 11.75 
Arm (mm) 18.60 ± 5.82 9.50 -  31.50 
Knee (mm) 13.33 ± 6.24 6.75 -  34.50 
Subscapula (mm) 16.71 ± 10.08 7.00 - 45.00 
Thorax (mm) 18.75 ± 9.18 9.00 - 42.50 
Waist (mm) 14.13 ± 10.84 4.00 - 47.00 
Total skinfold (i nm) 87.58 ± 41.39 42.25 -195.75 
Relative weight ( % )  96.8 ± 16.9 78.7 -143.8 

Density (gm/cm^) 1.0131± .0161 .9853 - 1.0426 
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the same for the skinfold thickness on the chin, arm, and 

knee. However, the increment in skinfold thickness for 

women 41-55 years of age, as compared with women 31-39 years 

of age, was greater for the measurements at the subscapula, 

thorax, and waist than the mean increment for the measure­

ments for women 31-39 years of age compared with women 25-29 

years of age. 

Means and standard deviations for the 48 subjects and 15 

younger subjects ranging from 25 to 29 years of age for 6 

skinfold measurements are given with corresponding measure­

ments for subjects from the Cornell study (9) and for young 

women from the Minnesota study (150) in Table 13. Means of 

all the skinfold measurements for the young women (age 25 to 

29 years) in this study were slightly smaller than the means 

for all the women (age 25 to 55 years) in this study. Com­

parison of the young women from Iowa State with the young 

women of the Cornell study showed smaller skinfolds at the 

chin, waist, and arm, and larger skinfolds at the subscapula, 

thorax, and knee for the Iowa State women. The Iowa State 

women had a slightly lower mean density (1.0303 gm per cubic 

cm) than the Cornell women (1.0342 gm per cubic cm) and 

slightly more fat estimated by the Rathbun and Pace equation 

(6), Equation 2. (Iowa State young women 30.58 per cent fat, 

Cornell women 28.69 per cent fat). 

The biacromial and biiliac diameters, and the 
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Table 13. Comparison of skinfold thickness of Iowa State, Cornell, and Minnesota 
women 

Site Iowa State3 Iowa State*3 Cornell0 Minnesota^ 

Chin 4. 77 ± 

o
 

CO i—
1 

5.64 ± 1.82 7.06 + 2. 25 8.7 ± 2.14 

Subscapula 13. 02 ± 4.38 14.68 ± 7.65 12.07 ± 4. 10 16.0 ± 4.68 

Thorax 15. 25 ± 5.25 16.97 ± 7.74 10.46 ± 4. 12 13.8 + 4.14 

Waist 8. 98 ± 2.56 11.61 ± 7.91 14.65 ± 6. 89 16.4 + 3.95 

Arm 14. 22 ± 5.38 16.82 ± 6.06 25.43 ± 6. 83 22.3 ± 4.91 

Knee 12. 05 + 2.94 12.83 ± 5.78 11.37 ± 3. 80 15.5 ± 3.53 

Total 68. 28 ± 18.62 78.55 ± 33.02 81.04 92.7 

^Fifteen women mean age 26.8 years, caliper pressure 10 gm per square mm. 

^Forty-eight women mean age 36.8 years, caliper pressure 10 gm per square mm. 

^Ninety-four women mean age 20.4 years, caliper pressure 10 gm per square mm. 

^Twenty-five women mean age 24.4 years, caliper pressure 10 gm per square mm. 
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Table 14. Comparison of skeletal and circumference measure 
ments of young women 

Site of measurement Iowa State women Cornell women 

Biacromial width, cm 36.18 + 2. 36 37. 24 ± 1.73 

Biiliac width, cm 28.89 + 1. 89 28. 50 + 1.41 

Upper arm 
circumference, cm 26.59 + 3. 68 25. 55 + 5.81 

Calf circumference, cm 36.13 ± 3. 08 35. 55 ± 1.99 

circumference of the arm and calf for the 48 subjects are 

given in Table 11. The means of these measurements for the 

young age group at Iowa State were slightly smaller than for 

the 48 subjects at Iowa State. The biacromial width ranged 

from 32.0 to 40.5 cm with a mean of 36.7 ± 2.0 cm. The bi­

iliac width ranged from 25.9 to 33.4 cm with a mean of 29.9 ± 

2.1 cm. The mean circumference of the arm was 27.6 ± 3.3 cm 

with a range from 22.0 to 37.4 cm. The calf circumference 

ranged from 32.5 to 45.0 cm with a mean of 36.8 ± 2.81 cm. 

Comparisons of these measurements for the young age group of 

Iowa State women with the Cornell women are presented in 

Table 14. The mean of the biacromial width of the young age 

group at Iowa State was slightly smaller than the Cornell 

women while the other measurements were slightly larger. 
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Correlations among Selected Variables 

Correlations between the skinfold measurements at 6 

sites and between each site and total skinfolds, density, and 

relative weight for the 48 women subjects are given in Table 

15. The correlation coefficients were highly significant for 

all comparisons (P < .01 to P < .001). Among the 6 indi­

vidual skinfold measurements the subscapula and the waist 

gave the highest correlation coefficient (.9034) and the knee 

and waist gave the lowest correlation coefficient (.5613). 

Correlation coefficients between relative weight and the 

individual skinfold measurements were very similar with a 

range from .6972 to .7992. A total of the 6 skinfold mea­

surements gave a higher correlation coefficient (.8364) than 

any singular skinfold measurement. Correlation coefficients 

between density and the individual skinfold measurements, the 

total of the skinfold measurements, and relative weight are 

given in the last column of Table 15. The thorax gave the 

highest correlation coefficient (-.7046) of all the skinfold 

measurements with density; the total of the 6 skinfold mea­

surements gave the second highest correlation coefficient 

(-.6985). The 2 lowest coefficients of correlations for 

density were with the knee and with relative weight, -.4244 

and -.4289, respectively. 

Correlations between the various individual skinfold 

measurements, the total skinfold measurements, relative 
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relative weight, and density are given for each age group in 

Tables 16, 17, and 18 for the women aged 25 to 29, 31 to 39, 

and 41 to 55 years, respectively. The correlation coeffi­

cients between the individual skinfold sites differed among 

the age groups. In the age group from 41 to 55 years of age 

the correlation coefficients were highly significant (P < 

.001) between all individual skinfold sites except between 

the knee and the thorax which was still significantly differ­

ent from zero (P < .01). In the age group from 25 to 29 years 

of age the correlation coefficients between individual skin­

fold sites were highly significant only between the subscapula 

and the arm, between the subscapula and the thorax, and be­

tween the arm and the thorax (P < .001). In the age group 

from 31 to 39 years of age only one correlation coefficient, 

between the waist and the thorax, was highly significant 

(P < .001). 

The relationship of the skinfold thickness at each site 

to the total skinfold thickness and to the relative weight 

was highly significant (P < .001) for the women in the older 

age group. In the age group from 31 to 39 years, all the 

correlations were significant, but the level of significance 

varied from P < .05 to P < .001. For the total skinfold 

thickness the highest correlation coefficient was obtained 

for the thorax (.9146) while the lowest correlation was ob­

tained for the chin (.6044). In the age group from 25 to 29 

years of age the correlation coefficients between relative 
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Table 15. Correlation coefficients between skinfold measurements, relative weight 
and density for 48 subjects, age 25 to 55 years 

Measurement Arm Knee Sub­
scapula 

Thorax Waist Total 
skinfold 

Relative 
weight 

Density 

Chin .7752 .6238 .7105 .7375 .7390 .8219 .7106 -.5372 

Arm .6071 .7945 .8619 .7400 .8967 .7992 -.6294 

Knee .6016 .5749 .5613 .7293 .7231 -.4244= 

Subscapula .8722 .9034 .9426 .7715 -.6475 

Thorax .8691 .9445 .7584 -.7046 

Waist .9277 .6972 -.6831 

Total skinfold .8364 -.6985 

Relative weight -.4289a 

aStatistical probability was < .01; statistical probability was < .001 for all 
other correlation coefficients. 
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Table 16. Correlation coefficients between 
and density for 15 subjects, age 

skinfold 
25 to 29 

measurements, relative weight 
years3 

Measure­
ment 

Arm Knee Sub­
scapula 

Thorax Waist Total Relative 
skinfold weight 

Density 

Chin .7001** .2657 .5591* .6081* .4588 .6804** .6277* -.2716 

Arm .6185* .7951*** .8528*** .6352* .9507*** .7287** -.4185 

Knee .4535 .4767 .1673 .6196* .6529** -.2588 

Sub­
scapula .8501*** .6126* .9000*** .5761* -.6075* 

Thorax .7359** .9477*** .7626*** -.7340** 

Waist .7314** .4454 -.5223* 

Total 
skinfold .7696*** -.6037* 

Relative 
weight -.4606 

^Statistical probability is indicated by asterisks as follows : *** probability 
< .001, ** probability < .01, and * probability < .05. 
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Table 17. Correlation coefficients between skinfold measurements, relative 
weight and density for 12 subjects, age 31 to 39 years3 

Measure- Arm 
ment 

Knee Sub- Thorax Waist Total Relative Density 
scapula skinfold weight 

Chin .6453* .5717 .3646 ,4147 .3936 6044* .6476* -.3524 

Arm .5714 .7388** .8189** .7065* .8937*** .8685*** -.5946* 

Knee 6212* .5085 .4909 .7677** .6411* -.5446 

Sub­
scapula .8160** .7801** .8901*** .7301** -.8798*** 

Thorax 8929*** .9146*** .6519* -.7469** 

Waist .8654*** .6860* -.7709** 

Total 
skinfold 8339*** -.7932** 

Relative 
weight -.6294* 

^Statistical probability is indicated by asterisks as follows : *** probability 
< .001, ** probability < .01, and * probability < .05. 
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Table 18. Correlation coefficients between skinfold measurements, relative weight 
and density for 21 subjects, age 41 to 55 years® 

Measure- Arm 
ment 

Knee Sub- Thorax Waist Total Relative Density 
scapula skinfold weight 

Chin .8481*** .7729*** .8391*** .8893*** .8720*** .9192*** .8340*** -.5793** 

Arm .6807*** .8984*** .9255*** .8778*** .9435*** .8972*** -.6590** 

Knee .6811*** .6492** .6917*** .7771*** .8347*** -.4003 

Sub­
scapula 9012*** .9470*** .9639*** .8719*** -.5964** 

Thorax .9232*** .9578*** .8221*** -.6838*** 

Waist ,9708*** .8213*** -.6953*** 

Total 
skinfold .9054*** -.6669*** 

Relative 
weight -.4323 

^Statistical probability is indicated by asterisks as follows : *** probability 
< .001 and ** probability < .01. 
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weight and the total skinfold measurements (.4454) was not 

significant while all other correlations were significant 

from P < .05 to P < .001. 

Correlations with density varied among the 3 age groups. 

For the age group from 41 to 55 years of age the only cor­

relation coefficients with density which were not significant 

were the knee and relative weight. For the age group from 

31 to 39 years of age, the correlation coefficients between 

density and the chin or the knee were not significant. In 

the age group from 25 to 29 years of age the correlation 

coefficients between density and the chin, the arm, the knee, 

and relative weight were not significant; the highest sig­

nificant correlation coefficient for density was with the 

thorax (P < .01). 

In general the absolute values for the correlation 

coefficients which were calculated were higher from the 

women aged 41 to 55 years than for women in the other age 

groups. 

Prediction of density from skinfold measurements 

A stepwise procedure was used to determine the multiple 

regression equations for prediction of density from skinfold 

measurements. The technique is explained in the Method of 

Procedure, Statistical Analysis. For the 48 subjects, 4 

regression equations were found to be significant for 
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predicting density from skinfolds, or skinfolds and relative 

wieght. These 4 equations (Equations 7-10) are presented in 

Table 19. The thorax was the best single predictor of 

density. The regression equation and standard error of the 

regression coefficient (s^), in parenthesis, obtained for 

predicting density from the thorax skinfold were as follows : 

Y = 1.0466 - .0014773X5 (Eq. 7) 

(.0002194) 

where is the thickness of the skinfold in mm and Y is the 

predicted density in gm per cubic cm. The simple correlation 

coefficient was -.7046 which is highly significant (P < .001). 

The standard deviation from regression (s x) was ± .0116 gm 

per cubic cm. The individual differences between the deter­

mined and predicted densities ranged from .0004 to .0239 gm 

per cubic cm. 

Intermediate equations which include the measurement of 

the thorax and relative weight (Equation 8) and the thorax, 

total skinfolds, and relative weight (Equation 9) were also 

highly significant (P < .001). For these two equations the 

multiple correlation coefficients were .7228 and .7601, 

respectively, and the standard deviations from regression 

(Sy<x) were ± .0115 and ± .0109 gm per cubic cm, respec­

tively. 

The best fitting multiple regression equation for the 48 
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Table 19. Regression equations for predicting density from skinfold measurements 
or skinfold measurements and relative weight 

Eq. Equation' 
F ratio 

no. 
Each 

variable 
All 

variables 
Cor. 
coef. 

Std. 
dev. 

Age 25 - 55 years; n = 48 

7 Y = 1.0466 

8 Y = 1.0259 

- .0014773X, 

0018718X. + .0002834Xp (X5) 31.8956*** 
3 ° (Xg) 2.4627 

45.3354*** 45.3354*** .7046 

24.6198*** .7228 

9 Y = 1.0098 - .0005479X5 - .0004243Xy 

+ . 0005627X, 8 il! .7429 
5.7520* 
7.3537* 20.0638*** .7601 

10 Y = 1.0078 - . 0005568X-7 + . 0005942Xg (X7 ) 40.5042*** 
(Xg) 8.5113** 29.8949*** .7554 

.0116 

.0115 

.0109 

.0109 

Age 25 - 29 years ; n = 15 

11 Y = 1.0507 - .0013378X 

12 Y 

15.1950** 15.1950** .7341 .0067 

1.0495 + .0013531Xo - .002520lXs (X2) 6.2470* 
z (X5) 20.6419*** 13.7875*** .8348 .0057 

aKey: Xg = arm; X3 = knee; X4 = subscapula; X5 = thorax ; X5 = waist; X7 = 
skinfold totals ; Xg = relative weight (skinfolds in mm; relative weight as per cent 
of average weight; density in gm per cubic cm). 
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Table 19. (Continued) 

F ratio 
Eq. Equation Each All Cor. Std. 
no. variable variables coef. dev. 

Age 31 - 39 years; n = 12 

13 Y = 1.0629 - .0028594X4 34.2592*** 34.2592*** .8798 .0084 

Age 41 - 55 years; n = 21 

14 Y = 1.0276 - .0010303X6 17.7879*** 17.7879*** .6953 .0118 

15 Y = .9958 - .0015497X, + ,0004055Xp (X5) 14.0135** 
0 0 (Xg) 2.3337 10.6851** .7367 .0115 

16 Y = .9888 - .0025526Xo - .0009566X, (Xo) 5.6789* 
2 (X6) 4.6218* 
+ .0008812Xg (Xg) 8.1083* 10.8680*** .8107 .0102 

17 Y = .9720 - .0030954Xo - .0009570X. (Xo) 7.7127* 
2 ^ (X3) 1.9172 

- .0008201XA + .00127I6X0 (Xa) 3.4047 
(Xg) 9.4914** 9.0701*** .8331 .0099 
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subjects was the total of skinfold measurements (Xy) and 

relative weight (Xg). The equation and the standard errors 

of the regression coefficients were as follows: 

Y = 1.0078 - .OOO5568X7 + .0005942Xg (Eq. 10) 

(.0000875) (.0002037) 

This relationship was highly significantly different from 

zero (p < .001). The multiple correlation coefficient was 

.7554. The standard deviation from regression was ± .0109 gm 

per cubic cm. A test of significance of the individual re­

gression coefficients for the total skinfolds and relative 

weight gave probabilities of < .001 and < .01, respectively. 

The individual differences between the determined and pre­

dicted densities ranged from .0001 to .0223 gm per cubic cm. 

For the first age group, 25 to 29 years of age, the 

thorax was the best single predictor, but a combination of 

the arm and the thorax was better. The best fitting regres­

sion equation for this age group was Equation 12 (Table 19). 

The regression equation and the standard errors of the regres­

sion coefficients were: 

Y = 1.0495 + .OOI353IX9 - .OO252OIX5 (Eq. 12) 

(.0005414) (.0005547) 

where Xp and X5 are the thickness of the skinfold of the arm 

and thorax, respectively. This equation had a multiple 
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correlation coefficient of .8348, which was highly significant 

(P < .001). The standard deviation from regression was 

± .0057 gm per cubic cm. The individual differences be­

tween determined and predicted densities ranged from .0004 to 

.0094 gm per cubic cm. 

The best single skinfold site as a predictor of density 

for the age group from 31 to 39 years was the subscapula mea­

surement (X^). No other site, single or combined, gave an 

F-ratio > 1.000 after this variable was in the equation. The 

equation and standard error of the regression coefficient 

were: 

Y = 1.0629 - .0028594Xj (Eq. 13) 

(.0004885) 

Equation 13 had a simple correlation coefficient value of 

-.8798, which is highly significant (P < .001). The standard 

deviation from regression was < .0084 gm per cubic cm. The 

differences between the determined and predicted densities 

ranged from .0006 to .0150 gm per cubic cm. 

In the oldest age group, 41 to 55 years, it appeared 

that a combination of several skinfolds was a better pre­

dictor of density than a single skinfold. Table 19 shows 

that 4 regression equations which were significant for pre­

dicting density in this age group. The best single skinfold 

measurement for predicting density was the skinfold of the 
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waist, but multiple variables gave a better fitting regres­

sion equation. The best fitting multiple regression equation 

and the standard errors of the regression coefficients were 

as follows : 

Y = .9720 - .0030954X2 - .0009570X3 - .0008201X& + .0012716Xg 

(.0011146) (.0006911) (.0004445) (.0004127) 

(Eq. 17) 

This equation includes measurements of the arm (X^), knee 

(Xg), and waist (x^), and relative weight (Xg) and had a 

multiple correlation coefficient of .8331, which is highly 

significant (P < .001). However, only the arm (X^) and rela­

tive weight (Xg) had coefficients that were significantly 

different from zero (P < .05 and P < .01, respectively). The 

standard deviation from regression was ± .0099 gm per cubic 

cm. The differences between the determined and predicted 

densities ranged from .0008 to .0154 gm per cubic cm. 

The accuracy in predicting density was improved if the 

subjects were subdivided into age groups as shown by the 

standard deviation from regression. The site of measurement 

and the best fitting regression equation varied with the age 

group; the arm and thorax combined gave the highest multiple 

correlation coefficient for the age group from 25 to 29 

years ; the subscapula gave the highest simple correlation 

coefficient for the age group from 31 to 39 years ; and the 
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arm, knee, waist, and relative weight have the highest 

multiple correlation coefficient for the age group from 41 

to 55 years. The accuracy of prediction equations for the 

young age group was better than for the older age groups. 

From the sites measured in this study, the best fitting 

regression equations for predicting density in the 3 age 

groups are Equations 12, 13 and 17. However, some of the 

other equations would likely give results that were not 

significantly different from the best fitting equations. 

In another trial, prediction equations for density were 

also obtained for the variables used above and for additional 

variables that were formed by various combinations of the 

skinfold measurements. Additional intermediate equations 

were obtained, but the final results were the same as given 

in Table 19. 

Siri (123) calculated the standard deviation for the 

estimation of fat from density as ± 4.0% of body weight; the 

standard error in the measurement of the subject's density 

was taken as ± .0025 gm per cubic cm. No improvement was 

obtained in the uncertainty in fat estimation in attempting 

to measure body density more accurately than ± .005 gm per 

cubic cm. The density prediction equations of best fit in 

this study gave standard deviations from regression as ± 

.0057, ± .0084, and ± .0099 for the 3 age groups 25-29 years, 

31-39 years, and 41-55 years, respectively. The standard 
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errors (Sy) of density for an individual person, figured at 

the means of the predicting variables, are ± .0058, ± .0087, 

and ± .0102 for the 3 age groups in the order mentioned. If 

one were to predict the density of an individual whose mea­

surements differed from these means, the standard error of 

the predicted density would increase. However, it would 

appear that the standard errors for predicting density for 

women from well chosen skinfold sites, especially in the 

25-29 year age groups, are close to the standard error set 

forth by Siri (123). Therefore, it appears that where time 

and money are limited the use of skinfold measurements would 

be of value in obtaining the body density which could be used 

for the estimation of the percentage of body fat. 

Changes in Body Composition with Aging 

Studies of body composition have enabled investigators 

to evaluate the"changes in the relative proportion of body 

weight as fat which occur with age. Brozek et al. (167) used 

a linear prediction equation based on the least square fit of 

the values obtained by underwater weighing and calculated the 

percentages of total body fat for women from 25 to 55 years 

of age as 26.5, 30.5, 34.5, and 38.5% fat at ages 25, 35, 45, 

and 55 years, respectively. These women were on the average 

about 95 to 97% relative standard weight. 
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In 1958 Mickelsen (168) reported a summary of the 

literature on changes in body composition with age. Data 

from height-weight tables, subcutaneous fat determinations, 

and body water, indicated an increase in body fat with an 

increase in age. In 1961 Brozek (169) discussed the changes 

that occur in body composition with age, sex, exercise, and 

nutritional state and pointed out that marked changes take 

place with time. Brozek (170) reported decreases in density 

in women from 20 to 60 years of age of 1.040 to 1.016 gm per 

cubic cm; 23 women aged 18 to 30 years (mean 24.2 years) had 

a mean density of 1.040 gm per cubic cm; 19 women aged 31 to 

45 (mean 39.1 years) had a mean density of 1.027 gm per cubic 

cm; 20 women aged 46 to 67 (mean 56.0 years) had a mean 

density of 1.016 gm per cubic cm. These groups had 23, 28 

and 32% fat, respectively. 

Parker et_ al. (171) reported a decrease in intracellular 

body water from 25.9 to 22.4% with an increase in age in 

females. This decrease accounted for most of the decrease 

in relative value for total body water. McMurrey et al. 

(162) reported values for 10 females, ranging in age from 

23 to 51 years ; there was a decrease in total body water from 

55.9 to 40.7% and an increase in fat from 23.6 to 44.4% with 

an increase in age. 

As stated previously, the percent of body weight as 

body fat of the subjects in this study was higher for women 
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in the middle years of adulthood than for the young women. 

Values for the 48 women were used to calculate a prediction 

equation with per cent of body fat as a function of age in 

years. The sample regression equation which was obtained 

was : 

% body fat = 19.3978 + .4156 (age) (Eq. 18) 

By use of this equation, percentages of total body fat pre­

dicted for women at ages of 25, 35, 45, and 55 years, were 

29.8, 33.8, 38.1, and 42.3%, respectively. These values are 

approximately 3% higher than the mean percentages of total 

body fat reported for women of corresponding ages by Brozek 

et al. (167). The 48 women, however, represented a wider 

range of body weight in relation to desirable body weight 

than the subjects studied by Brozek and co-workers. 

Of the subjects in this study, 24 were of desirable body 

weight or within the range of 90 to 110% of the average body 

weight according to the 1959 Build and Blood Pressure Study 

(160). Values for density, per cent of body weight as fat, 

and skinfold measurements of these subjects are given in 

Table 20; the subjects were distributed among 4 age groups: 

25 to 29, 31 to 39, 41 to 49, and 51 to 55 years, respec­

tively. The mean per cent of body fat for these 4 age groups 

was 32.2, 33.6, 37.4, and 40.8%, respectively. The per cent 

of body fat calculated from the linear regression equation 
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(Equation 18) at the mean age for each of the above 4 groups 

was 30.3, 33.2, 37.8, and 41.6%, respectively. The mean per 

cent body fat for the women who were within ± 10% of de­

sirable weight and in the age group from 25 to 29 years was 

higher than the per cent fat predicted from the linear re­

gression equation while the mean per cent body fat for the 

women aged 51 to 55 years was lower than the per cent fat 

predicted from the linear regression equation. 

Although the mean values for per cent of body fat 

increased with corresponding increments in age, there was 

considerable variation in the total body fat of individuals 

within each age group. The widest range of values was for 

the 5 women of average body weight who were in the age range 

of 31 to 39 years. For this group, the body fat ranged from 

21.7 to 46.1%; however, three of the subjects varied only 

from 30.7 to 36.3% in body fat. Of the 9 women who were 

between 25 and 29 years of age, 2 had values for body fat 

greater than 33%; the range was from 28.8 to 39.9%. There 

were only 2 of 8 women,' aged 41 to 49 years, who had values 

for total body fat less than 33%. The range for this group 

was 25.4 to 43.6% and 4 of the subjects had values higher 

than 40%. 

These data support the general observation that the 

relative proportion of total body fat increases with age. 

The extent of variation among individual subjects suggests, 
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however, that the increase in body fat is not an obligatory 

function of aging. Longitudinal studies of individuals over 

a period of time would be of value in determining the rela­

tive degree of constancy of the ratio of body fat that may 

be maintained with weight control. 
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Table 20. Density, per cent fat, and skinfold measurements of subjects in 4 age 
groups and within 90 to 110% relative weight 

Relative Skinfold measurements 
a _ . . ^ j_b 

Subject weight Density Fat Chin Arm Knee Subscapula Thorax Waist 
no. % gm/cm^ % mm mm mm mm mm mm 

Age 25 - 29 years; x = 26.2 ± 1.5 years; n = 9 

26 93.6 1.0334 29.0 3.00 9.50 8.00 12.00 12.25 9.00 
27 100.8 1.0350 28.3 3.75 13.50 14.75 12.00 16.75 8.25 
28 90.6 1.0280 31.5 5.00 12.75 9.00 9.00 13.25 8.25 

29 107.8 1.0157 37.4 5.25 14.25 12.00 16.50 21.75 13.75 
30 92.4 1.0290 31.1 5.00 8.50 11.75 9.75 10.75 7.75 
31 97.8 1.0104 39.9 5.75 21.00 11.75 24.00 24.75 11.00 

33 100.7 1.0338 28.8 3.75 14.75 16.75 13.50 12.00 6.25 
15 99.0 1.0292 31.0 6.25 17.75 12.75 14.25 17.75 10.00 
7 101.5 1.0252 32.8 4.50 20.50 13.25 12.25 19.75 13.00 

X 98.2 1.0266 32.2 4.69 14.72 12.22 13.69 16.56 9 . 6 9  
± 5.4 ± .0084 ± 3.8 ± .98 ± 4.38 ± 2.67 ± 4.47 ± 4.87 ± 2.49 

aPer cent relative weight based on averages reported in 1959 Build and Blood 
Pressure Study (160). 

kper cent fat calculated from Equation 1. 



www.manaraa.com

Table 20. (Continued) 

Relative , Skinfold measurements 
b Subject weight3 Density Fat Chin Arm Knee Subscapula Thorax Waist 

no. % gm/cm % mm mm mm mm mm mm 

Age 31 - 39 years ; x - 33.2 ± 3.0 years ; n - 5 

3 93.2 1.0494 21.7 5.50 14.25 18.25 9.00 9.25 5.25 
8 91.6 1.0179 36.3 4.75 9.50 8.50 10.50 14.50 11.50 
16 92.1 1.0244 33.2 4.75 14.75 9.50 11.75 9.75 7.25 

13 106.7 .9978 46.1 7.50 25.50 26.75 19.75 29.50 20.50 
39 90.5 1.0297 30.7 6.25 22.00 9.00 12.00 22.00 8.25 

X 94.8 1.0238 33.6 5.75 17.20 14.40 12.60 17.00 10.55 
± 4.0 ± .0187 ± 8.9 ±1.22 ±6.44 ± 7.99 ±4.17 ±8.62 ± 6.00 

Age 41 - 49 years; x = 44.4 ± 3.2 years 

00 n c
 

24 95.9 1.0199 35.3 6.00 18.00 14.75 15.25 19.50 12.25 
40 90.7 1.0098 40.2 5.25 14.75 11.50 15.25 14.00 9.00 
6 96.2 1.0056 42.2 5.00 18.75 16.75 14.25 15.50 13.00 

21 93.1 1.0044 42.8 6.00 18.75 15.75 15.25 14.25 ' 14.25 
44 90.9 1.0272 31.9 6.50 14.25 16.25 15.00 10.25 11.75 
5 94.0 1.0152 37.6 5.00 15.75 9.75 13.50 12.75 9.50 

2 109.0 1.0413 25.4 7.75 20.50 13.75 14.25 19.75 7.75 
46 96.9 1.0028 43.6 6.00 19.25 13.00 13.50 21.50 17.25 

X 95.8 1.0158 37.4 5.94 17.50 13.94 14.53 15.94 11.84 
± 5.8 ± .0133 ± 6.3 ± .91 ± 2.29 ± 2.44 ± .76 ± 3.92 ± 3.09 
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Table 20. (Continued) 

Relative Skinfold measurements 
Subject weight3 Density Fat" Chin Arm Knee Subscapula Thorax Waist 
no. % gm/cm^ % mm mm mm mm mm mm 

Age 51 - 55 years; x = 53.5 ±2.1 years; n = 2 

48 94.1 
23 104.4 

x 99.2 
± 7.3 

1.0124 38.9 
1.0047 42.7 

1.0086 40.8 
± .0056 ±2.7 

6.25 17.25 
6.00 21.00 

6.12 19.12 
± .18 ± 2.65 

16.75 11.25 
8.50 16.00 

12.62 13.62 
± 5.83 ± 3.36 

12.00 10.00 
17.75 14.00 

14.88 12.00 
± 4.06 ± 2.83 
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SUMMARY 

The body composition of 48 apparently healthy women 

varying in age and size was investigated. Values were ob­

tained for body weight, height, density, body water, and 

anthropometric measurements. Body fat was estimated by 

several techniques and the changes in body fat with an in­

crease in age were examined. 

The mean body weight of the subjects was 61.237 ± 9.511 

kg with a range from 48.020 to 93.822 kg. The mean height 

was 165.2 cm with a range from 154.8 to 180.9 cm. Relative 

weight of each subject was calculated from the averages 

presented in the 1959 Build and Blood Pressure Study by the 

Society of Actuaries (160); the range in relative weight was 

from 78.2 to 143.8% with a mean of 96.6 ± 14.2%. 

Density was measured by the helium dilution technique. 

The body densities of the 48 subjects ranged from .9853 to 

1.0494 gm per cubic cm. The mean body density of the sub­

jects was 1.0215 ± .0162 gm per cubic cm. 

Body water values were obtained from a sub-group of 25 

subjects. Antipyrine was used as a test solute to estimate 

the total body water. The mean total body water was 30.317 

± 3.493 liters, ranging from 24.551 to 39.117 liters. The 

mean total body water was 49.2% of body weight, ranging from 

41.8 to 55.6% of body weight. Sodium thiocyanate was used 
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as a test solute to estimate the extracellular water. The 

mean extracellular water was 16.290 ± 1.870 liters with a 

range from 13.506 to 20.774 liters. The mean extracellular 

water was 26.5 ± 3.1% of body weight with a range from 20.2 

to 32.5% of body weight. Total body water and extracellular 

water were determined again after a period of 3 to 4 1/2 

months on 3 subjects. The results were similar to the 

original determinations. 

Per cent body fat was calculated from 6 different equa­

tions involving density, total body water, and extracellular 

water. The means of the per cent body fat calculated from 

the 6 equations ranged from 31.60 to 34.70% of body weight. 

The individual per cent fat calculated from the 6 equations 

agreed within ± 4% of body weight except for 4 subjects. The 

correlation coefficients between the 6 equations were all 

significant (P < .01). 

Anthropometric data, including skinfold thickness, were 

obtained for the 48 subjects. The biacromial width ranged 

from 32.0 to 40.5 cm with a mean width of 36.7 ± 2.0 cm. 

The biiliac width ranged from 25.9 to 33.4 cm with a mean of 

30.0 ± 2:1 cm. The mean circumference of the arm was 27.6 ± 

3.3 cm with a range from 22.0 to 37.4 cm. The calf circum­

ference ranged from 32.5 to 45.0 cm with a mean of 36.8 ± 

2.8 cm. 

Skinfold measurements were made at 6 sites. Correlation 
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coefficients between these 6 sites, a total of these 6 sites, 

relative weight, and density were presented. The group of 48 

women were sub-divided into 3 age groups and regression equa­

tions for predicting density from skinfold measurements were 

presented. 

The changes in body fat with an increase in age were 

examined and a linear prediction equation presented. The 

percentages of total body fat calculated from the prediction 

equation were 29.8, 33.9, 38.1, and 42.3% of body weight at 

ages 25, 35, 45, and 55 years, respectively. 
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APPENDIX: DATA SHEETS FOR BODY VOLUME DETERMINATIONS 

Form 1: Bottle Data 

Bottle no.: 
Robe: 
Volume of bottles (VK): 

Date: 
Time: 
Bar. Press. (Pu): 

Initial MV: 

Corr. Fac.: 

Recorder: 

Corr. Fac.: 

Final MV: 

Corr. Fac.: 

Recorder: 

Corr. Fac.: 

TEMPERATURES 
He Tank Chamber 

Dry / Wet / Wet 

Rx = MVf -

T = T 
dw dry 

MV^ = 

wet 

T THe + Tdry 

w 

% = (?b)  (Tdw) ( -00066)  [1  + (T^ .00115)]  = 

( ) ( ) (.00066) [1 + ( ) (.00115)] 

Pv = Pw 

-K 

Pv; 

p = pb/pb = 

d„ = (P) (T) = 
X 

V = (V - Vb)dx = (401.400 

bv 
= P 

b 

-P v 

bv' 

) ( ) = 

c = v 13.94 13.94 

X V' + v ( ) + 13.94 ( ) 
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Form 2: Subject Data 

Subject: 
Date: 
Time: 

Initial MV: 

Corr. Fac.: 

Recorder: 

Corr. Fac.: 

Final MV: 

Corr. Fac.: 

Recorder: 

Corr. Fac.: 

Weight: 
Volume: 
Density: 

Bar. Pressure (P^): 

He Tank 
Temperatures 

Chamber 
Dry Wet Wet 

273.18 273.18 273.18 

w 
Data on Bottles : 

Ri 

Rg: 

G: (Vc-V1) dx 

H: (Vc-V2) d2 

(V' on bottle data sheet) 

(V1 on bottle data sheet) 

Rx = MVf S1 = Rx S2 = Rx 

-MV^ -Rj -Rg 

Rx: Sl: S2: 

T = T - T — 
dw dry wet 

T ~ THe//Tdry 

K = (Pb) (Tdw) (.00066) [1 + (Tdw) (.00115)] = 

( ) ( ) (.00066) [1 + ( ) (.00115)] 

Pv = Pw Pbv = Pb 

-K -p v 

pv; PbV 



www.manaraa.com

138 

? = Pb/Pb = 

dv = (P) (T) = 

I = (Vc) (dx) = (401.400) ( 

A = G 

A: 

C = H 

-I 

C: 

) = 

B = H 

+v 

D = G 

13.94 + v 13.94 

B: D: 

x D = 

S2 x B = 

x C = 

x A = 

F = SjD 

-S2B 

F: 

E = S2BA 

-S1DC 

E: 

V = E/F = 

vx = V'/dx = 

V 

C — 
* (Vf - Vx)d, + v 

13.94 

(401.400 - ) ( ) + 13.94 

13.94 
i  y 

Cx = 
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